
LIYANA ARACHCHIGE RANIL

WEB SERVICE RELATED SHORT NOTES

1. WSDL describes a web service

2. WSDL has two predominant version , 1.1 and 2.0 (2.0 is

previously known as 1.2)

3.

4. WSDL binding describes a messaging protocol

LIYANA ARACHCHIGE RANIL

5.

6. SOAP is such a messaging protocol which relies on HTTP

transport mainly

7. WSDL binding could be RPC style or DOCUMENT style

8. RPC style would keep the name of the soap operation element in

the SOAP massage while the DOCUMENT style would not keep

the name of the SOAP operation.

LIYANA ARACHCHIGE RANIL

9.

10.

11. RPC/LITERAL

12.

LIYANA ARACHCHIGE RANIL

13.

14. DOCUMENT / LITERAL

15.

16.

17. To have the name of the operation use , DOCUMENT literal

wrapped pattern

LIYANA ARACHCHIGE RANIL

18.

19.

20. Both styles can use either SOAP encoding or not / ENCODED or

LITERAL. Encoding will have additional data type encoding in

SOAP messages , which is an additional overhead

21. JAX-RPC 1.1 supports WS-Interoperability Basic Profile 1.0.

LIYANA ARACHCHIGE RANIL

22. JAX-RPC 1.0 lacks support for WS-Interoperability Basic

Profile 1.0 and this support is added in JAX-RPC 1.1

23. JAX-RPC 1.1 supports RPC/LITERAL , JAX-RPC 1.0 did not

support this

24. JAX-RPC 1.1 is required to support RPC/ENCODED,

RPC/LITERAL, DOCUMENT/LITERAL. DOCUMENT/ENCODED is

optional

25.WS- Interoperability Basic Profile 1.0 clarifies SOAP 1.1 ,HTTP

1.1 , WSDL 1.1

26. WS – Interoperability Basic Profile 1.1 added additional

things such as support for MTOM and WS-Addressing

27. JAX-RPC is by default RPC/ENCODED style

28. JAX-RPC is essentially JAVA RMI over SOAP

29. JAX-RPC has its own type mapping from XML->JAVA and

JAVA->XML.

30. JAX-RPC type mapping is not fully complete in terms of XML

schema types

31. JAX-RPC does not support WSDL binding to direct HTTP, it only

supports WSDL binding to SOAP protocol only

32. JAX-RPC is targeted for J2EE1.4 platform. This has been

replaced by JAX-WS in J2EE5

33. JAX-RPC handlers rely on SAAJ 1.2

34. JAX-WS handlers rely on SAAJ 1.3 which is compatible with

both SAAJ 1.1 and 1.0

35. SAAJ 1.3 can handle SOAP 1.2 , SOAP 1.1 messages , while

SAAJ 1.2 can only handle SOAP 1.1 messages

36. JAX-WS replaces JAX-RPC 1.1

37. JAX-WS still supports SOAP 1.1 , WSDL 1.1 and HTTP 1.1

38. JAX-WS also supports SOAP 1.2 , WSDL 2.0 (WSDSL 1.2)

LIYANA ARACHCHIGE RANIL

39. JAX-RPC session management was tied to HTTP , but JAX-

WS provides message level SESSION MANAGEMENT

40. SERVICE REGISTRATION and DISCOVERY is not JAX-WS

concern , its provided via another module called JAXR

independently

41. JAX-WS is aimed at J2EE5 , while it use JAVA 5 , annotations, Not

compatible with JAVA 1.4

42. JAX-WS supports binding , SOAP HTTP and XML HTTP both

43. JAX-WS supports WS-I Basic Profile 1.1

44. J2EE5 supports both JAX-WS and JAX-RPC

45. JAX-WS uses JAXB 2.0 as it’s data binding library

46. JX-WS only used JAXB as the binding library , you can not

use external ones such as JIBX or CASTOR

47. JAX-WS can be used to generate Web services in both CONTRACT

FIRST (Start WSDL contract and generate Java classes) and CODE

FIRST (Start with a JAVA class and use annotation to generate

both WSDL file and JAVA interface) approach

48. JAX-WS service implementation steps

a. Create the Service Endpoint Implementation class (SEI)

with @WebService and @WebMethod annotations

LIYANA ARACHCHIGE RANIL

b.

c. Use WSGEN tool to generate any Java Bean bindings, WSDL

and XSD for this SEI (wsgen -cp .

com.ibm.jaxws.tutorial.service.OrderProcessService -wsdl).

JAXB is in use when binding are generated

LIYANA ARACHCHIGE RANIL

d.

LIYANA ARACHCHIGE RANIL

e.

LIYANA ARACHCHIGE RANIL

f.

g. After generating all the ARTIFACTS , deploy the JAX-WS

web service endpoint in a respective JAX-WS supported

server

49. JAXB2.0 supports for all XML schema data types

50. JAX-WS supports asynchronous functionality (by means of Call

back or Polling) in it’s interfaces which is lacking in JAX-RPC

51. JAX-WS supports MTOM (Message Transmission Optimization

Mechanism) , JAX-RPC does not support this

52. JAX-WS handlers rely on SAAJ 1.3

LIYANA ARACHCHIGE RANIL

53. JAX-WS supports only DOCUMENT literal approach , SOAP

encoding is not supported

54. WS-I Basic Profile provides guidance to use SOAP 1.1 ,

WSDL 1.1 and UDDI 2.0

55. Apache AXIS 1.x is an implementation of JAX-RPC

56. Apache AXIS 1.x relies on SAX to process messages

57. Apache AXIS 2 is not JAX-RPC , it is a proprietary

implementation

58. Apache AXIS 2 is designed on AXIOM (AXIS Object Model)

59. AXIOM relies on StAX for XML processing

60. AXIS2 has JAX-WS API support

61. Apache CXF is a combination of Celtix and XFire

62. Apache CXF is a Web service framework

63. CXF has JAX-WS API support

64. CXF support JAX-RS (API for RESTful web services)

65. There are three different types of web service clients (JAX-RPC)

are possible to be created. Dynamic Proxy (Need the WSDL URL

to create proxies, good for situations where WDL is very dynamic

which changes frequently) , Dynamic Invocation Interface (DII, no

need anything other than the ENDPOING address, very

dynamic) , Static Stub Clients ,Application Client (Via JNDI

lookups)

66. Dynamic Proxy Client in JAX-RPC 1.1 is not suitable for web

service invocations where complex types are used. It is

recommended to use Dynamic Proxy in cases where the web

service method have only Java primitive types

67. Dynamic Proxy , Client Stub would always need web service

endpoint developers to give a way required classes , in case of

Dynamic Proxy , at least Interface definition (Can be taken from

LIYANA ARACHCHIGE RANIL

WSDL URL as well) , in case of Client Stub all the stub related file

generated using wscompile tool.

68. Also WSCOMPILE tool can be used to generate DYNAMIC

PROXY interface for Dynamic Proxy Clients

69.

70.

71.

72. The amount of code required to do in case of Client Stub is

lesser that Dynamic Proxy and Dynamic Invocation Interface (DII)

73. In case of DII , service implementers does not have to give

anything other than the ENDPOING ADDRESS

74. DII lets programmers to interact with SOAP XML request and

response messages

75. You can use SAAJ for sending SOAP messages as a NON-

RPC option as well

76. Dynamic Proxy and DII are believed to be slower when

compared to Client Stubs

77. JAX-WS approach is similar to JAX-RPC though there is less

code involved

78. JAX-WS requires lot of J2SE 5 annotation features

79. JAX-WS clients can be written using Dynamic Dispatch Client

API (Dynamic Client programming model), and the Dynamic

Proxy Client API (static client programming model)

80. Both Dynamic Dispatch Client API and Dynamic Proxy Client API

supports both SYNCHRONUS and ASYNCHRONOUS invocations

LIYANA ARACHCHIGE RANIL

81. Dynamic Dispatch client API is useful when you want to work

with XML message level without any generated Artifacts at the

JAX-WS level

82. Dynamic Dispatch Client can send data in either PAYLOAD or

MESSAGE mode

83. Dynamic Dispatch Clients

supports ,javax.xml.transform.Source , JAXB Objects or

javax.activation.DataSource

84. Dynamic Proxy Client – Use this when you want to invoke a

Web Service based on an END POINT interface

85. Dynamic Proxy Client is the equivalent in Stub Clients in

JAX-RPC

86. But in JAX-WS the Dynamic Proxy Client does not need static

classes as in the case of JAX-RPC. The proxy classes are

generated at the RUN TIME in case of JAX-WS using WSDL

87. Dynamic Dispatch Client provides more flexibility than JAX-

RPC Dynamic Invocation Interface (DII)

88. JAXB is used for JAVA-to-XML and XML-to-JAVA binding. Java-to-

XML binding is known as Marshalling while XML-to-Java is know

as Un marshalling

89. JAXB is used to convert a .XSD to corresponding mapped

JAVA classes and also to create .XSD from Java Classes

90. EJB3.0 / EJB2.1 supports converting a STATELESS SESSION BEAN

to a WEB SERVICE END POINT

91. EJB 2.0 DID NOT have support for WEB SERVICES

92. EJB 2.1 Web service implementation

a. Create an Additional REMOTE interface for STATELESS

SESSION bean which is going to be EXPOSED as a WEB

SERVICE END POINT

LIYANA ARACHCHIGE RANIL

b. The SESSION BEAN DOES NOT NEED to implement this

REMOTE interface, just REMOTE interface needs to have

same METHOD SIGNATURES of the METHODS that are

going to be EXPOSED

c.

d. The interface MUST extend java.rmi.Remote interface

e. All methods MUST throw REMOTE EXCEPTION

f. The method prams , return types MUST be JAVA types

SUPPORTED by JAX-RPC

g. Service Endpoint Interface MUST NOT include CONSTANTS

LIYANA ARACHCHIGE RANIL

h. In addition to that the CONTAINER needs to know to which

Implementation class that incoming SOAP messages should

be dispatched. For this “webservices.xml” file is provided

in META-INF

i.

j. In addition to that the corresponding WSDL must also be

provided , to GENERATE the WSDL the CONTAINER

provider usually provides TOOLS (such as wscompile)

k. Webservice.xml file would specify where to find the WSDL

and JAX-RPC mapping file

93. EJB 3.0 Web Service Implementation

a. The CLASS must be annotated with @WebSerivice or

@WebServiceProvider

b. The implementing CLASS may reference an END POINT

INTERFACE using “endpointInterface” element. But this is

NOT COMPULSORY

c. If no “enpointInterface” is defined , the interface is

IMPLICITLY DEFINED for implementing CLASS

d. Business Methods MUST BE , PUBLIC , MUST NOT be

STATIC or FINAL

e. Business Methods that are exposed to WEB SERVICE

CLIENTS MUST be annotated with @WebMethod

LIYANA ARACHCHIGE RANIL

f. Business methods exposed must have arguments , return

types COMPATIBLE to JAXB

g. Implementing class MUST NOT be FINAL or ABSTRACT

h. Implementing class MUST HAVE a DEFAULT PUBLIC

CONSTRUCTOR

i. The ENDPOINT class MUST BE annotated with @Stateless

j. The Implementing class may use @PreDestroy or

@PostConstruct

k.

94. EJB based WEB SERVICES are managed by the

CONTATINER

95. EJB 3.0 web services are heavily annotation based

RESTFUL WEB SERVICES

1. RESTful web service stands for REPRESENTATIONAL STATE

TRANSFER

LIYANA ARACHCHIGE RANIL

2. In RESTful web services , the WS is viewed as RESOURCES while

identified by their URL(S)

3. The HTTP methods such as GET , POST are the VERBS that the

developer can use to describe the necessary CREATE , READ,

UPDATE and DELETE (CRUD) actions to be performed

4. However REST style and HTTP protocol are MUSTUALLY

EXCLUSIVE , the REST DOES NOT REQUIRE HTTP

5. RESTful Web Services / When to Use

a. Web Services are Completely STATELESS

b. The SERVICE PRODUCER and SERVICE CONSUMER have a

MUTUAL understanding of the CONTEXT and CONTENT

being passed along. Because there is no FORMAL way to

DESCRIBE the Web Service INTERFACEC

c. REST is particularly USEFUL for LIMITED PROFILE devices

such as PDA , Mobile Phones

6. SOAP based web services / When to Use

d. A FORMAL contract must be established to describe the

interfaces that the Web Service offer

e. Architecture must address complex NON-FUNCTIONALI

requirements such as TRANSACTIONS, SECURITY,

ADDRESSING, TRUST, COORDINATION etc. Most real world

application go BEYOND simple CRUD operations and

require CONTEXTUAL information and CONVERSATIONAL

STATE to be MAINTAINED

f. The Architecture needs to handle ASYNCHRONOUS

processing and INVOCATION

7. JAX-WS provides FULL support for RESTful web services

8. JAX-WS provides building RESTful endpoints through a

javax.xml.ws.Provider interface. Provider is a GENERIC interface

LIYANA ARACHCHIGE RANIL

that can be implemented by a CLASS as a dynamic alternative to

a SERVICE END POING INTERFACE

9. Service implementing Provider interface can be DEPLOYED in a

J2EE container or published in a STAND-ALONE mode through the

JAX-WS Endpoing API

10.

11. Application can access RESTful web services in two ways ,

from the BROWSER or PROGRAMMATICALLY

12. In JAX-WS , use javax.xml.ws.Dispatch for accessing RESTful

web services programmatically

LIYANA ARACHCHIGE RANIL

13.

14. Unlike the PROVIDER on Server side , developers do not

implement this API (Dispatch) , instead they obtain an instance

from the Service object

15.

16.@WebServiceProvider vs @WebService , @WebServiceProvider is

used with Provider interface implementations and there is only

one method in the interface. @WebService is for SEI which could

have more than one methods annotated with @WebMethod

