LIYANA ARACHCHIGE RANIL

WEB SERVICE RELATED SHORT NOTES

1. WSDL describes a web service
2. WSDL has two predominant version, 1.1 and 2.0 (2.0 is
previously known as 1.2)

WSDL 1.1 WSDL 2.0
’deﬁnitions | description
types
types
message
[V M| Es
w0
portType interface 33
operation operation
Pinput nput
[output ou
A
bindi 2
|binding | | | |pinding | $s
2%
service service 3]
[port | e

3 Represertation of concepts defined by WSDL 1.1 and WSDL 2.0 documents. &

4. WSDL binding describes a messaging protocol

LIYANA ARACHCHIGE RANIL

=<4 -— Abstract interfaces --F
<interface name="REETfullnterface">

<fault name="ClientError" element="tns:response"f>

<fault name="ServerError" element="tns:response"f>

<fault name="Redirection" element="tns:responss"fx

<operation name="Get" pattern="http: / fuwr. w3 org/ns wsdl fin-out" >
<input messagelabel="In" element="tns:request"fi
<output messagelabel="0ut" slement="tns:response"f>

< foperation>

<operation name="FPost" pattern="http:/ s w3 org/ns/wsdlfAn-out ">
<input messagelabel="In" element="tns:request"fi
<output messagelabel="0ut" element="tns:response"f>

< foperation>

<operation name="Put" pattern="http:/ fmmr. w3 org/msfwsdl fin-oas " >
<input messagelabel="In" element="tns:reguest"§f>
<output messagelabel="0ut" element="tns:response"f>

< foperation>

<operation name="Delete" pattern="http: /S s w3 org/ns osdl fAn-oac ">
<input messagelabel="In" element="tns:reguest"§f>
<output messagelabel="0ut" element="tns:response"f>

< foperation>

< finterface>

=4 -= Copcrete Bipding Over HITE —-F
“binding name="RESTfullnterfaceHotpBinding" interface="tn=s:RBEETfulInter face"
type="http: / fwmmr w3 orgins/wsdl fheep ' >
<operation ref="tns:Get" whttp:method="GET"fx>
<operation ref="tns:Post" whttp:method="FOST"
whttp:inputSerialization="application/x—wmr-forn—urlencoded" f>
“operation ref="tn=s:Fut" whttpimethod="PUT"
whttp:inputferialization="application/x—wm—-forn-urlencoded" f>
<operation ref="tns:Delete" whttp:method="DELETE"f>
< fbinding>

=4 == Concrete Bipding with S0AF-->=
<binding name="RESTfullnterfacelfcapBinding" interface="tn=:REETfulInterface"
type="http: /fwmmr w3 orginsswsdlf=soap”
wsoap:protacol="http: /S g w3 org/Z0053 /08 soap /bindings HITRS"
wsoap:nepbefanlt="http: /fwmr. w3 org/EZ003 /058 soap fmepfrequest-response" >
<operation ref="tns:Get" Ff>
<operation ref="tns:FPaost" f>
<operation ref="tns:Fut" f>
<operation ref="tns:Lelete" f>
< fbinding>

=== Webk Service offering endpoints for both bipdipgs-—-F
tgervice name="RESTfulferwvice" interface="tns:RESTfullnterface">

“endpoint name="RBESTfullferviceHotpEndpoint"
binding="tns: REATfulInter faceHoctpEinding"
address="http: / fuww. exanple. con/rest; " f>

“endpoint name="RBESTfulfervicelScapEndpoint”
binding="tns: RESTfulInterfaceScapBinding"
address="http: //mww_exawple con/soap/"f>

. < feervice>

6. SOAP is such a messaging protocol which relies on HTTP
transport mainly

7. WSDL binding could be RPC style or DOCUMENT style

8. RPC style would keep the name of the soap operation element in
the SOAP massage while the DOCUMENT style would not keep
the name of the SOAP operation.

LIYANA ARACHCHIGE RANIL

Listing 2. RPClencoded WSDL for myiethod
<message name="myMethodRegquest'>

cpart name="x" tCype="xsd:int"
<part name="y" type="wsd:float"
= /Messages=
<MMessage name="empty"

<portType name="FPT"x
<operation name="wnMethod"'=
<input message="nmyMethodrequest" =
—output message="empty" =
<Joperation=

= /partTypes=
<binding .../=
<l-— I won't bother with the details, just assume it's RP_/Sencoded. --=
9.
<s0ap:envelopes
<s0ap:body=
“tMethod:=
wx =Eiitype="msdiint" =5
<y x5 type="wsd: Tloat"=5. 0«
= /MMethod=
<fsoap: body>
10 < //soap:envelopes

11. RPC/LITERAL
12.

Listing 4. RPCiliteral WsDL for rmyiMethod

<message name="mMethodrequest''s
<part name="x" type="wsd:int" M=
<part name="v'" tCype="=sd:Tloat" >~

< /MMessages

<message name="empty' S=

portType name="PT'"=
<aperation name="nmpMethod" =
<input message="nmyMethodrequest" =
<output message="empty" /=
<joperation=
< SportTypes

<binding .../ >
<!-— I won't bother with the details, just assume it's RPC/1iteral. --=

LIYANA ARACHCHIGE RANIL

Listing 5. RPCiliteral SOAP message for mytethod

<soap:envelopes
<soap: body=
<trMethod=
o B S
Sy B 0y
< myMethod=
</soap: body=
< fsoap:envelopes

13.
14. DOCUMENT / LITERAL
15.

<Lypes:>
<5 Cchemax>
<element name="xElement” type="xsd:int"/>
<element name="yElement" type="xsd:Tloat" />
< /s chemax>

< Stypess>

<message name="mMethodRegquest''>
<part name="x" element="xElement” /-
<part name="v" element="yElement" /x
< /Messages=

<Message name="empty" =

cportType name="PT"=x
<operation name="wypMethod"'=
<input message="nmyMethodrequest" =
<output message="empty" =
< foperations
CAportTypes

<binding .../
<l== I won't bother with the details, just assume it's document/literal. --=

Listing 7. Documentiiteral SOAP message for myflethod

<soapienvel opes
=s0ap: body=
<xElement=5</<E]lemant=
<wElement=5.0<,/vE]lements
< /soap: body=
<fsoap:envel opex

16.
17. To have the name of the operation use , DOCUMENT literal
wrapped pattern

LIYANA ARACHCHIGE RANIL

18.

Listing 8. Documentliteral wrapped YWSDL for myMethod

<Lypess
=5 Chema=
<element name="myMethod":»
<complexTypex
<SEequencex
<element name="x" type="xsd:int" />
<element name="y" type="xsd:Ffloat" />
< /sequence>
< fcomplexType:x
</Selement>
<element name="myMethodResponse">»
<complexType/=
</Selement>
< /s chemax
< Ftypess
<message name="myMethodRequest''s
<part name="parameters' element="myMethod" /-
< /Mess ages
<message name="empty":»
<part name="parameters" element="myMethodResponse" />
</messagex

<portType name="pT'=
<operation name="mMethod'=
<input message='"myMethodrequest" />
<output message="empty" /=
<Joperations

< SportTypes
<binding .../~
<!-— I won't bother with the details, just assume it's document/1iteral. --=

Listing 9. Documentiiteral wrapped SOAP message for rmyMethod

<soap:envel opes
<5s0ap: body=
“tMethod:=
o G
o=, 0y
= MuMethod=
</s0ap: body=
<Ssoap:envel opes

19.

20. Both styles can use either SOAP encoding or not / ENCODED or
LITERAL. Encoding will have additional data type encoding in
SOAP messages , which is an additional overhead

21. JAX-RPC 1.1 supports WS-Interoperability Basic Profile 1.0.

LIYANA ARACHCHIGE RANIL

22. JAX-RPC 1.0 lacks support for WS-Interoperability Basic
Profile 1.0 and this support is added in JAX-RPC 1.1
23. JAX-RPC 1.1 supports RPC/LITERAL , JAX-RPC 1.0 did not

support this

24. JAX-RPC 1.1 is required to support RPC/ENCODED,
RPC/LITERAL, DOCUMENT/LITERAL. DOCUMENT/ENCODED is
optional

25. WS- Interoperability Basic Profile 1.0 clarifies SOAP 1.1 ,HTTP
1.1, WSDL1.1

26. WS - Interoperability Basic Profile 1.1 added additional
things such as support for MTOM and WS-Addressing

27.JAX-RPC is by default RPC/ENCODED style

28.JAX-RPC is essentially JAVA RMI over SOAP

29. JAX-RPC has its own type mapping from XML->JAVA and
JAVA->XML.
30. JAX-RPC type mapping is not fully complete in terms of XML

schema types
31. JAX-RPC does not support WSDL binding to direct HTTP, it only
supports WSDL binding to SOAP protocol only

32. JAX-RPC is targeted for J2EE1.4 platform. This has been
replaced by JAX-WS in J2EE5

33. JAX-RPC handlers rely on SAAJ 1.2

34. JAX-WS handlers rely on SAAJ 1.3 which is compatible with
both SAAJ 1.1 and 1.0

35. SAAJ 1.3 can handle SOAP 1.2 , SOAP 1.1 messages , while
SAAJ 1.2 can only handle SOAP 1.1 messages

36. JAX-WS replaces JAX-RPC 1.1

37. JAX-WS still supports SOAP 1.1, WSDL 1.1 and HTTP 1.1
38. JAX-WS also supports SOAP 1.2 , WSDL 2.0 (WSDSL 1.2)

LIYANA ARACHCHIGE RANIL

39. JAX-RPC session management was tied to HTTP , but JAX-
WS provides message level SESSION MANAGEMENT
40. SERVICE REGISTRATION and DISCOVERY is not JAX-WS

concern , its provided via another module called JAXR
independently

41.JAX-WS is aimed at J2EE5 , while it use JAVA 5, annotations, Not
compatible with JAVA 1.4

42. JAX-WS supports binding , SOAP HTTP and XML HTTP both
43. JAX-WS supports WS-I Basic Profile 1.1

44. J2EES5 supports both JAX-WS and JAX-RPC

45. JAX-WS uses JAXB 2.0 as it's data binding library

46. JX-WS only used JAXB as the binding library , you can not

use external ones such as JIBX or CASTOR

47. JAX-WS can be used to generate Web services in both CONTRACT
FIRST (Start WSDL contract and generate Java classes) and CODE
FIRST (Start with a JAVA class and use annotation to generate
both WSDL file and JAVA interface) approach

48. JAX-WS service implementation steps

a. Create the Service Endpoint Implementation class (SEI)
with @WebService and @WebMethod annotations

LIYANA ARACHCHIGE RANIL

b.

package com.ws.Jjaxvs;

import Jjavax.jws.WebMethod:

import Jjavax.jws.WebZervice:

import Jjavax.jws.soap.30LPEinding:

import Jjavax.]jws.soap.30APEinding.Parameterityle;
import Jjavax.jws.soap.30APEinding. Style;

import Jjavax.jws.soap.3C0APEinding. Use;

[ehService (serviceName="CrderProcess" , portName = "OrderProcessFort™
targetNamespace = "http://javax.ibm.tutorial/ jaxws/orderprocess™)

F30APEinding (style=3tyle.DOCTUMENT, use=Use . LITERAL,
parameter3tyle=Parameter3tyle . WREADDED)
public class OrderProcess3ervice |
AWebMethod
public OrderBean processOrder (OrderBean orderBean) {
System.out.println("PFrocess Order called for customer™ + orderBean.getCustomer () .getlame ()) ;
if jorderBean.getOrderItems (] !'= null){
System. cut.println("Nuwber of order items "+orderBean.getOrderItems().length);

orderBean.setOrderId("2099MH") ;

return orderEBean;

c. Use WSGEN tool to generate any Java Bean bindings, WSDL
and XSD for this SEI (wsgen -cp .
com.ibm.jaxws.tutorial.service.OrderProcessService -wsdl).

JAXB is in use when binding are generated

LIYANA ARACHCHIGE RANIL

package com.Ws.]axXWs;

public class OrderBean {

private Customer customer:
private Address shippingliddress;
private OrderItem[] orderltems;

private String orderId:
public Customer getCustomer (]

return customer:

public void setCustomer (Customer customer) |
this.customer = customer:;

public Address getfhippingiddressi() {
return shippingiddress;

public void set3hippingiddress|iddress shippinghddress)
this.shippingiddress = shippingiddress;

public OrderItcem[] getcOrderItems()
return orderlItcems;

public void setCrderItems (OrderItem[] orderlItems) |
this.orderltems = orderlItems;

{

LIYANA ARACHCHIGE RANIL

e.

L<?xml wersion="1,0" encoding="UTF-3" standalone="yes"?:>
texsischema version="1.0" targetMamespace="hitp: S Javax.ibm. tutorizl jaxws order

e — " IS TR ST~ = I

<X3

D e B BT Y S R R TR

L T T T T T TR Iy

THE:
THE:

THE:
THE:

<xs:complexType
<XSSequUEnCE>
<HS:

element

relement

element
element

</ ®szequencer

<Hs:oomplexType
NS SequenCe:>
CHS:

element
element
element

</ ®s:zequencer
<fuaicomplexType:

<xz:element name="processdrder™ type="tns:processirder™ >
<us:ielement name="processirderResponse™ type="tns:processirderResponse™/ =

<Hs:oomplexType name=s"processOleder ™=
NS SequenCe:>
<Hsielement name="argld™ Type="ins:orderBean™ minOocurs="ors >
</ ¥3isequences
</ xscomp lexTypesr

natne="orderfean ">

name="cus tomer™ type="tns:customer™ minOocurs="TorS s
name="orderTd" type="xs:string” minOocours="or/ s>
name="orderItems " Lype="tnsrorderItem” nillable="true™ mindcoc
name="shippingldddiress™ type="tns:address ™ minQoocurs="or >

<fus:icomplexTypes

name="cus tomer -

name="gddress" type="xsrstring” minOoours="TorS s
name="cus tId" type="xz:int" >
name="name"™ type="xs:string” minOccurs="TorS >

<Hs:oomplexType name=s"orderThem™:-

LIYANA ARACHCHIGE RANIL

49.

“rxm]l wersion="1.0" ecencoding="UTF-8" standalone="yes'" 2

< !—-— GFenerated by JALX-W3 REI at http: /s /jax-wz.dewv. java.net. RI'=s wersion i=z JAX-TWIS RI
<definitions targetMamespace="http: ffjarax.ibm. tutorial fFjaxrws forderprocess" name="0xr¢
"http: ffiavax. ibm. tutorial fjaxres forderprocess" xnlhs:xsd="http: ffwrr. w3 . org 2001 2P0

<types>
=xad: achema
<Hgd:importc namespace="http: frfjavrax.ibm. tutorial Fjasoes forderprocess" schemnaloc
< dmad: schemas
LSEypess
<message nane="processlrder'>
<part nams="parameters" slement="tns:processirder" /-
</meszage-
<message nane="processlrderResponse’ >
<part name="parameters" clement="tns:processlrderResponse" /=
<Smessage-
<portType name="0rderProcessService' =
<operation hame="processlrder'>
<input message="tns:processirder" /-
<output message="tns:processirderPBesponse" /-
<Soperatiorns
< SportTypel-
<binding hname="0rderProcessPortBinding" type="tn=:0rderProcessService'>>
<soap:binding transport="http: ffschemas . xmlsoap.orgfsoap fhtitp" =style="document"
<operation name="processirder' >
<goap:operation sSoaplction="" =
<impuat=
<zgoap:body use="literal" />
< Sinputs
<Loutputs
<soap:body use="literal" />
= Soutpuatis
< soperatiorn-
=</bindings
«<service name="0OrderProcess'>
<port name="0rderProcessPFort" binding="tn=:0rderProcessPortBinding" >
gEsoap:address location="REPLACE WITH ACTURL URL" | >
< Sports
<iservice>

. After generating all the ARTIFACTS , deploy the JAX-WS
web service endpoint in a respective JAX-WS supported
server

JAXB2.0 supports for all XML schema data types

50. JAX-WS supports asynchronous functionality (by means of Call

back or Polling) in it’s interfaces which is lacking in JAX-RPC

51. JAX-WS supports MTOM (Message Transmission Optimization

52.

Mechanism) , JAX-RPC does not support this

JAX-WS handlers rely on SAA] 1.3

LIYANA ARACHCHIGE RANIL

53. JAX-WS supports only DOCUMENT literal approach , SOAP
encoding is not supported

54. WS-I Basic Profile provides guidance to use SOAP 1.1,
WSDL 1.1 and UDDI 2.0

55. Apache AXIS 1.x is an implementation of JAX-RPC

56. Apache AXIS 1.x relies on SAX to process messages

57. Apache AXIS 2 is not JAX-RPC , it is a proprietary
implementation

58. Apache AXIS 2 is designed on AXIOM (AXIS Object Model)

59. AXIOM relies on StAX for XML processing

60. AXIS2 has JAX-WS API support

6l. Apache CXF is a combination of Celtix and XFire

62. Apache CXF is a Web service framework

63. CXF has JAX-WS API support

64. CXF support JAX-RS (API for RESTful web services)

65. There are three different types of web service clients (JAX-RPC)
are possible to be created. Dynamic Proxy (Need the WSDL URL
to create proxies, good for situations where WDL is very dynamic
which changes frequently) , Dynamic Invocation Interface (DIl, no
need anything other than the ENDPOING address, very
dynamic) , Static Stub Clients ,Application Client (Via JNDI
lookups)

66. Dynamic Proxy Client in JAX-RPC 1.1 is not suitable for web
service invocations where complex types are used. It is
recommended to use Dynamic Proxy in cases where the web
service method have only Java primitive types

67. Dynamic Proxy , Client Stub would always need web service
endpoint developers to give a way required classes , in case of

Dynamic Proxy , at least Interface definition (Can be taken from

LIYANA ARACHCHIGE RANIL

WSDL URL as well) , in case of Client Stub all the stub related file
generated using wscompile tool.

68. Also WSCOMPILE tool can be used to generate DYNAMIC
PROXY interface for Dynamic Proxy Clients

1. Creates a Serwvice object named hello3ervice:

Jerwice hellolervice =
serviceFactory.createlervice (helloWsdllUrl,
69. new (Name (name3pacellri, servicelName)]):;

http: //localhost: §080/hello-Jaxrpe/hella?WW3DL

70.
dynamicproxy.HelloIF nwFroxy =
[dynanicproxy.HelloIFihelloZervice.getPort(
new (Name (hamneipacelri, portName),

71 dyhanicproxy.HelloIF.class) ;

72. The amount of code required to do in case of Client Stub is

lesser that Dynamic Proxy and Dynamic Invocation Interface (DlII)

73.In case of DIl , service implementers does not have to give
anything other than the ENDPOING ADDRESS

74. DIl lets programmers to interact with SOAP XML request and
response messages

75. You can use SAA] for sending SOAP messages as a NON-
RPC option as well

76. Dynamic Proxy and DIl are believed to be slower when
compared to Client Stubs

77. JAX-WS approach is similar to JAX-RPC though there is less
code involved
78. JAX-WS requires lot of J2SE 5 annotation features

79. JAX-WS clients can be written using Dynamic Dispatch Client
API (Dynamic Client programming model), and the Dynamic
Proxy Client API (static client programming model)

80. Both Dynamic Dispatch Client APl and Dynamic Proxy Client API
supports both SYNCHRONUS and ASYNCHRONOUS invocations

LIYANA ARACHCHIGE RANIL

81. Dynamic Dispatch client API is useful when you want to work
with XML message level without any generated Artifacts at the
JAX-WS level

82. Dynamic Dispatch Client can send data in either PAYLOAD or
MESSAGE mode

83. Dynamic Dispatch Clients
supports ,javax.xml.transform.Source , JAXB Objects or
javax.activation.DataSource

84. Dynamic Proxy Client - Use this when you want to invoke a
Web Service based on an END POINT interface

85. Dynamic Proxy Client is the equivalent in Stub Clients in
JAX-RPC

86. But in JAX-WS the Dynamic Proxy Client does not need static
classes as in the case of JAX-RPC. The proxy classes are
generated at the RUN TIME in case of JAX-WS using WSDL

87. Dynamic Dispatch Client provides more flexibility than JAX-
RPC Dynamic Invocation Interface (DlIl)

88.JAXB is used for JAVA-to-XML and XML-to-JAVA binding. Java-to-
XML binding is known as Marshalling while XML-to-Java is know
as Un marshalling

89. JAXB is used to convert a .XSD to corresponding mapped
JAVA classes and also to create .XSD from Java Classes

90. E)JB3.0 / EJB2.1 supports converting a STATELESS SESSION BEAN
to a WEB SERVICE END POINT

91. EJB 2.0 DID NOT have support for WEB SERVICES

92. EJB 2.1 Web service implementation

a. Create an Additional REMOTE interface for STATELESS
SESSION bean which is going to be EXPOSED as a WEB
SERVICE END POINT

LIYANA ARACHCHIGE RANIL

b. The SESSION BEAN DOES NOT NEED to implement this
REMOTE interface, just REMOTE interface needs to have
same METHOD SIGNATURES of the METHODS that are
going to be EXPOSED

C.

package examples;

f** This is the Hello service endpoint interface. */

public interface HellolInterface extends java.rmi.Remote
I EEEEEEEEEEEEEEEE——
-hapter 5

{
public String hello() throws java.rmi.RemoteException;

}

d. The interface MUST extend java.rmi.Remote interface
e. All methods MUST throw REMOTE EXCEPTION

The method prams , return types MUST be JAVA types
SUPPORTED by JAX-RPC

g. Service Endpoint Interface MUST NOT include CONSTANTS

LIYANA ARACHCHIGE RANIL

93.

h.

In addition to that the CONTAINER needs to know to which
Implementation class that incoming SOAP messages should
be dispatched. For this “webservices.xml” file is provided
in META-INF

<xml version="1.0" encoding="UIF-§"2>
<yehservices xmlns="kttp://java. sun. com/ml /na/j2ee" wmlng i xsi="http: /Swwaw. Wi, or g/ 2001/ XMLS cheme
<wehservice-descriptions
<dizplay-name>HelloWor 1dWS</ dizp lay-names>
<uehzervice-deseription-name>HelloWor 1dWg</ vehservice-deser ipt ion-name>
<madl-file-META-INF/wsdl/HelloService wadl</usdl-filex
<Jaxrpe-wapping-£1le-META-INF/mapping. xml</ jaxrpe-wapping-files
<pOrt-COMpOnent>
<display-namerHelloWs</ dizplay-names
<port-component-nawmerHello</ port-component - name >
<yzdl-port >HelloInterfacePort</wadl-ports
<service-endpoint-interfacercom.ejb2 1. HelloInterfaces/ service-endpoint-interfaces
<3ervice-impl-hean»
<ejh-linkrHello</eib-link>
<fservice-impl-heans
</ port-component>
</wehzervice-description>
</webservices:

In addition to that the corresponding WSDL must also be
provided , to GENERATE the WSDL the CONTAINER
provider usually provides TOOLS (such as wscompile)
Webservice.xml file would specify where to find the WSDL
and JAX-RPC mapping file

EJB 3.0 Web Service Implementation

The CLASS must be annotated with @WebSerivice or
@WebServiceProvider

. The implementing CLASS may reference an END POINT

INTERFACE using “endpointinterface” element. But this is
NOT COMPULSORY

If no “enpointinterface” is defined , the interface is
IMPLICITLY DEFINED for implementing CLASS

Business Methods MUST BE , PUBLIC , MUST NOT be
STATIC or FINAL

Business Methods that are exposed to WEB SERVICE
CLIENTS MUST be annotated with @WebMethod

LIYANA ARACHCHIGE RANIL

f. Business methods exposed must have arguments , return
types COMPATIBLE to JAXB

g. Implementing class MUST NOT be FINAL or ABSTRACT

h. Implementing class MUST HAVE a DEFAULT PUBLIC
CONSTRUCTOR

i. The ENDPOINT class MUST BE annotated with @Stateless

j. The Implementing class may use @PreDestroy or
@PostConstruct

package com.sun.futorial.javaee.ejb;

import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebService;

@stateless

@WebService

public class HelloServiceBean {
private String message = "Hello, "

public void HelloServiceBean() {}

@ebMethod
public 5tring sayHello{String name) {
return message + name + "

!

k.
94, EJB based WEB SERVICES are managed by the
CONTATINER
95. EJB 3.0 web services are heavily annotation based

RESTFUL WEB SERVICES

1. RESTful web service stands for REPRESENTATIONAL STATE
TRANSFER

LIYANA ARACHCHIGE RANIL

2. In RESTful web services , the WS is viewed as RESOURCES while
identified by their URL(S)

3. The HTTP methods such as GET , POST are the VERBS that the
developer can use to describe the necessary CREATE , READ,
UPDATE and DELETE (CRUD) actions to be performed

4. However REST style and HTTP protocol are MUSTUALLY
EXCLUSIVE , the REST DOES NOT REQUIRE HTTP

5. RESTful Web Services / When to Use

a. Web Services are Completely STATELESS

b. The SERVICE PRODUCER and SERVICE CONSUMER have a
MUTUAL understanding of the CONTEXT and CONTENT
being passed along. Because there is no FORMAL way to
DESCRIBE the Web Service INTERFACEC

c. REST is particularly USEFUL for LIMITED PROFILE devices
such as PDA , Mobile Phones

6. SOAP based web services / When to Use

d. A FORMAL contract must be established to describe the
interfaces that the Web Service offer

e. Architecture must address complex NON-FUNCTIONALI
requirements such as TRANSACTIONS, SECURITY,
ADDRESSING, TRUST, COORDINATION etc. Most real world
application go BEYOND simple CRUD operations and
require CONTEXTUAL information and CONVERSATIONAL
STATE to be MAINTAINED

f. The Architecture needs to handle ASYNCHRONOUS
processing and INVOCATION

7. JAX-WS provides FULL support for RESTful web services

8. JAX-WS provides building RESTful endpoints through a
javax.xml.ws.Provider interface. Provider is a GENERIC interface

LIYANA ARACHCHIGE RANIL

that can be implemented by a CLASS as a dynamic alternative to
a SERVICE END POING INTERFACE

9. Service implementing Provider interface can be DEPLOYED in a
J2EE container or published in a STAND-ALONE mode through the
JAX-WS Endpoing API

10.

Code Sample 1

EfehServiceProvider

@EServiceMode (ralue=Service . Mode . PAYLORAD)
public class MyProvider implements Prowvider=Zource> {
public Source inwvoke [3ource source) {
String replvyElement = new String("<prhello world< p>-"):
Streamfource reply = hnew Streamlource|
new StringReader (replvyElement)) :

return replwy:

}

public static woid main(3tring args[]1) {
Endpoint e = Endpoint.create(HITPEinding.HTTP_EBINDING,
new MyProwvider()):
e.publish("http: //127.0.0.1:5084/hellofworld™) 2
A4 Bun forewer e.stopl();

i
L

11. Application can access RESTful web services in two ways ,
from the BROWSER or PROGRAMMATICALLY
12. In JAX-WS , use javax.xml.ws.Dispatch for accessing RESTful

web services programmatically

LIYANA ARACHCHIGE RANIL

Code Sample 3

A5 T iz the message type.
public interface Dispatch<T: !
AS gynchronous request-response
T invaoke(T m=adg);
/. async request-response
Fesponse<T> invokebdsync (T madg);
Future<?> invokedsvync (T msg, AsyhncHandler<T- h):

A4 one-way

woid inwvokeOneWay (T madg) :

13. }

14. Unlike the PROVIDER on Server side , developers do not
implement this API (Dispatch) , instead they obtain an instance
from the Service object

15.

gervice = Service.createi]:

gervice.addPort(qnane, HITPEinding.HTTP_BINDING, url):

Dispatch<iource> dispatcher = service.createDispatchinew QName (™™, "1,
SJource.class, 3ervice.Mode. PAYLOAD) ;

16. @WebServiceProvider vs @WebService , @WebServiceProvider is
used with Provider interface implementations and there is only
one method in the interface. @WebService is for SElI which could
have more than one methods annotated with @WebMethod

