SHORT NOTES / UML

- 1. MODEL is a simplification of REALITY
- 2. There are mainly THREE building blocks of UML
- 3. ELEMENTS, RELATIONSHIPS and DIAGRAMS [ERD]
- 4. ELEMENST are the abstractions that are FIRST CLASS citizens in a MODEL
- 5. RELATIONSHIPS tie these ELEMENTS together
- DIAGRAMS groups collection of related elements by means of RELATIONSHIP

ELEMENTS

- 1. ELEMENTS There are FOUR types of ELEMENTS
 - a. STRUCTURAL Used to create the static part of the MODEL
 - b. BEHAVIOURAL To model the behavior of the system
 - c. GROUPING To organize the structural and behavioral elements
 - d. ANNOTATIONAL Explanatory parts of the model
- 2. STRUCTURAL class , interface , collaboration , use case , active class , component , node
- 3. CLASS

e.

4. INTERFACE

f.

5. COMPONENT

g.

h.

6. NODE

7. BEHAVIOURAL ELEMENTS - Used to model the system behavior

- 8. There are TWO major types , INTERACTION and STATE MACHINE
- 9. Interaction a set of MESSAGES exchanged among set of OBJECTs within a particular CONTEXT
- 10. INTERACTION

11. state machine – specifies a SEQUENCE of STATES of an OBJECT

12. STATE MACHINE

j.

State

13. GROUPING ELEMENTS - There is only ONE type of GROUPING elements

- 14. that is PACKAGE
- 15. PACKAGE

k.

- 16. ANNOTATIONAL ELEMENTS There is only ONE type
- 17. NOTE is an annotation element

I.

RELATIONSHIPS

- 1. There are FOUR standard RELATIONSHIPS
- 2. DEPENDENCY , ASSOCIATION , GENERALIZATION and REALIZATION
- 3. DEPENDENCY semantic relationship between two elements, if one changed that effect the other. [Dashed line with an arrow]

a.

- b. class1 has a REFERENCE to class2, either passed as a METHOD parameter or defined as a METHOD VARIABLE
- 4. AGGREGATION Aggregation is a SPECIAL kind of ASSOCIATION
 - a. Aggregation represents WHOLE PART relationship and this is a WEAK "HAS A" relationship

b.

- c. COMPANY as a whole comprised of its PARTS
- d. COMPONENT may survive without the aggregate object
- e. The COMPONENT object may be accessed without going through the AGGREGATE object
- f. The AGGREGATE object DOES NOT TAKE PART in the lifecycle of the COMPONENT object
- g. Example History class object that has Students as aggregates , but if the History class object is destroyed , still the STUDENT would exist

h.

- COMPOSISTION Composition is also a special kind of ASSOCIATION
 - a. Very similar to AGGREGATION, but composite object has sole responsibility for the DISPOSITION of the COMPONENT PARTS
 - b. The RELATIONSHIP between the COMPOSITE and the COMPONENT is a "strong" HAS A relationship

d.

{Comp - Strong - COS}

- 6. GENERALIZATION Parent/super class, child/subclass
 - a. GENERALIZATION

b.

c.

7. REALIZATION - implementation of interfaces

UML DIGRAMS

- 1. there are TWO main categories
 - a. STRUCTURAL and BEHAVIORAL
 - b. BEHAVIORAL diagrams has a sub category called INTERACTION DIAGRAMS
- STRUCTURAL DIGRAMS Describe the components that make up the system. Used to communicate the OVERALL structure of the system to the developers
- 3. BEHAVIORAL DIGRAM describe the processing of the system

- 4. INTERACTION DIAGRAMS describe the FLOW of CONTROL and DATA among the system components
- 5. STRUCTURAL DIAGRAMS
 - a. CLASS DIGRAM

b. COMPONENT DIAGRAM – shows the organization and dependencies among a set of components. Component diagrams address STATIC IMPLEMENTATION view of the system. Think how you are going to code those, as a

JSP, Servlet or Bean or what

c. DEPLOYMENT DIGRAM – Shows the configuration of RUN-TME processing nodes and the components that live on these nodes. Deployment diagrams address the STATIC DEPLOYMENT VIEW of an architecture Typically a NODE encloses ONE or MORE component

 d. PACKAGE DIAGRAM – physical packages you expect within the system. These are used to communicate the PACKAGING of the software for BUILD and DEPLOYMENT

6. BEHAVIORAL DIAGRAM

a. ACTIVITY DIAGRAM – shows FLOW from ACTIVITY to ACTIVITY within the system

 b. STATE CHART DIAGRAM - shows a state machine consisting of states, transitions, events and activities.
Define different states of an OBJECT during its lifetime.
Useful in modeling REACTIVE systems. Behavior of a SINGLE object across MANY USE CASES

 c. USE CASE DIAGRAM – shows set of USE CASES ,actors , and their RELATIONSHIPS. Addresses the STATIC use case view of the system

7. INTERACTION DIAGRAMS

 a. SEQUENCE DIAGRAM - time ordering of messages. You should use sequence diagram when you want to look at the behavior of SEVERAL OBJECTS within a SINGLE USE CASE

 b. COLLABORATION DIAGRAM / COMMUNICATION DIGRAMstructural organization of objects. Messages are numbered to identify the sequence

- c. Sequence and Collaboration diagrams are ISOMORPHIC , one can be transformed to the other
- d. All INTERACTION DIGRAMS start with an ACTOR

