
LIYANA ARACHCHIGE RANIL

SHORT NOTES ON JAVA SECURITY – PLATFORM SECURITY AND

OTHER

1. JAVA security includes two things

a. Provide the JAVA platform as a secure , readily built

platform on which to run JAVA enabled applications in a

secure manner

b. Provide security tools and services implemented in JAVA

2. The ORIGINAL SAND BOX model introduced in JDK 1.0 SECURITY

MODEL is very much restricted. All the LOCAL code (such as

file system) was TRUSTED while downloaded REMOTE code

(such as applets) is NOT TRUSTED and can access only

limited resources provided inside the SANDBOX

3. The sandbox (JDK 1.0) model was deployed through the JDK and

was generally adopted by all applications built with JDK 1.0,

including JAVA enabled browsers

4. Overall security is enforced through number of mechanisms.

a. LANGUAGE LEVEL (JVM)

i. The language is designed to be TYPE – SAFE

ii. Language has AUTOMATIC MEMORY

MANAGEMENT

iii. Language has AUTOMATIC GARBAGE

COLLECTION

LIYANA ARACHCHIGE RANIL

iv. Language has RANGE CHECKING on Strings and

ARRAYS

b. COMPILER AND BYTECODE LEVEL

i. Compiler and Byte code verifier ensures that only

legitimate JAVA byte codes are executed

ii. This would guarantee the language safely at RUN

TIME

c. CLASS LOADERS LEVEL

i. Class loaders define a local name space, which can

be used to ensure that an un trusted applet cannot

interfere with the running of the other programs

d. ACCESS TO CRITICAL SYSTEM RESOURCES ARE

PROHIBITED

i. Access to crucial system resources is mediated by

JVM and is checked in advanced by a SECURITY

MANAGER

5. JDK 1.1 introduced the concept of SIGNED APPLETS

6. In that a correctly digitally signed applet is treated as If it is

trusted local code if the key is recognized as trusted by the

end system that received the applet

7. SIGNED applets together with their signature are delivered in the

JAR format

8. In JDK 1.1 UNSIGNED applets still run in a SANDBOX

LIYANA ARACHCHIGE RANIL

9. New JAVA 2 PLATFORM SECURITY ARCHITECTURE (1.2)

10. New JAVA 2 PLATFORM SECURITY provides

a. Fine grained control

b. Easily configurable security policy

c. Easily accessible access control structure

d. Extension of security checked to all Java programs ,

including applications as well as applets

11. This fine grained security capability was with JDK from its

beginning, but to realize it users had to subclass java

SecurityManager and ClassLoader classes. HotJava browser

was one of those which uses old JDK and provide fine grained

security features

12. Up to JDK 1.1 in order to create a NEW ACCESS PERMISSION,

you had to add a new CHECK method to the

SECURITYMANAGER class. The new architecture allows TYPED

PERMISSIONS and AUTOMATIC HANDLING of all permissions.

No new methods to be created in SecurityManager class

13. There is no longer a build in concept that all LOCAL code

trusted. Instead local code is subjected to the same security

control as applets

LIYANA ARACHCHIGE RANIL

14. It is possible to declare that the policy on local code (or

remote code) be the most liberal and enabling such code to

effectively run as totally trusted

15. The same principle applies to SIGNED APPLETS and any JAVA

APPLICATION

16. A PROTECTION DOMAIN is set of objects that are currently

directly accessible by a PRINCIPAL where principle is an

ENTITY in the computer system to which PERMISSIONS are

granted

17. A PROTECTION DOMAIN is a convenient principle in grouping

and isolation between units of protection

18. PROTECTION DOMAIN falls in to two categories

a. SYSTEM DOMAIN

b. APPLICATION DOMAIN

c.

19. PROTECTION DOMAIN(S) are determined by the POLICY

currently in effect

a.

20. A THREAD of EXECUTION may occur completely within a single

PROTECTION DOMAIN or may involve an APPLICATION DOMAIN

and also a SYSTEM DOMAIN

LIYANA ARACHCHIGE RANIL

21. APPLICATION DOMAIN DOES NOT gain additional permission by

calling the SYSTEM DOMAIN

22. Today all the code shipped as part of JAVA 2 SDK is considered

SYSTEM CODE

23. when SYSTEM DOMAIN invokes a method from an

APPLICATION DOMAIN the effective access rights are the same

as current rights enabled in the APPLICATION DOMAIN

24. A less POWERFULL domain can not gain additional

permissions as a result of CALLING or BEING CALLED by a

more powerful domain

25. A simple rule for calculating permissions ,

a. The permission of an execution thread is considered to be

the INTERSECTION of the permissions of all PROTECTION

DOMAINS traversed by the execution thread

b. When a piece of code calls the doPriviledge method , the

permission set of the execution thread is considered to

include a permission , if it is allowed by the said code’s

protection domain and by all protection domains that are

called or entered directly or indirectly subsequently

c. A caller can be marked as being PRIVILEDGED when it

calls the doPrivileged

26. By Default JAVA programs run without a SECURITY MANGER

, to use SECURITY MANAGER you need to Install it before running

the program

27. To create a new type of permission ,

a. Extend the java.security.Permission class and create a new

Permission class

b. Create another Permission class “TVPermission” which

extends the fist created permission

LIYANA ARACHCHIGE RANIL

c. com.abc.Permission extends

java.security.Permission ; com.abc.TVPermission

extends com.abc.Permission

d.

e. Add an entry in policy file to give permission to users who

want to allow this new type of permission

f. grant codebase “http://java.sun.com/” { permission

com.abc.TVPermission “channel-5”, “watch”; }

g. In Application code , when checking to see if a permission

should be granted , call AccessControlle’s

checkPermission method

h. TVPermission tvPerm = new TVPermission(“cahnnel-

5”,”watch”)

AccessController.checkPermission(tvPerm);

28. AccessController is used for three cases ,

a. To decide whether an access to a critical system resource

is to be allowed or denied based on the current security

policy in effect

b. To mark code as being PRIVILEDGE thus effecting

subsequent access determinations

c. To obtain a snapshot of current calling security context to

be used in different a context

29. FilePermission perm = new

FilePermission(“path/file”,”read”);

AccessController.checkPermission(perm);

30. JAVA has a class loader hierarchy

http://java.sun.com/

LIYANA ARACHCHIGE RANIL

31. The ROOT of the class loader is java.lang.ClassLoader

(Abstract), this was introduced in JDK 1.0.

32. SecureClassLoader was introduced in JDK 1.2 (JAVA 2)

33. URLClassLoader is a subclass of the SecureClassLoader

34. Each class is loaded by it’s classloader , there is a

PRIMODIAL class loader that BOOTSTRAPS the class loading

process. Primordial class loader is written in a NATIVE language

such as C

35. The base JAVA Classes (java.*) which are essential for the

correct functioning of the Java Virtual Machine and runtime have

a class loader that is NULL

36.When a class loader is asked to LOAD a class, this class loader

either loads a class itself or it can ask another class loader to do

so. Meaning the FIRST class loader DELEGATES the class loading

to SECOND class loader

37. The default implementation of the JAVA 2 SDK Class Loader

method for loading classes

a. Check if the class has already been loaded

b. If the current class loader has a specified delegation

parent, delegate to the parent to try to load this class. If

there is no parent then delegate to PREMODIAL class

loader

c. Call a customized method to find the class elsewhere

(Developers need to do this)

38. Same class must not be loaded by the same class loader more

than once and this is critical for type safety

39.When loading the FIRST class of an APPLICATION , a new

instance of URLClassLoader is used

40.When loading the FISRT class of an APPLET , a new instance

of AppletClassLoader is used

LIYANA ARACHCHIGE RANIL

41.When java.lang.Class.ForName is directly called , PRIMODIAL

class loader is used

42. If the request to load a class is triggered by a reference to it from

an existing class, the class loader for the existing class is asked

to load the class

43. CLASS LOADER always looks at the STANDARD classes first

44. Class loaders keep namespaces of different APPLETS separate

45. Whenever and APPLET is run, a SECURITYMANAGER is

installed

46. SECURITY MANAGER represents the concept of a central

point of Access Control , while ACCESS CONTROLLER implements

a particular access control algorithm

47. To protect ONE method in ALL instances , use SECURITY

MANAGER while to PROTECT a REFERENCE to an INDIVIDUAL

instance , use GUARDEDOBJECT

LIYANA ARACHCHIGE RANIL

48.

49. You can write your OWN GUADE or use permission class

since it is already implementing the GUARGE interface

50. A SIGNEDOBJECT instance acts as a WRAPPER around an

instance of another class. A SIGNEDOBJECT instance contains the

SERIALIZED representation of the WRAPPED OBJECT. Along with

the signature information necessary to validate the WRAPPED

OBJECT’S IDENTITY

51.

52. JAR signing is digitally signing jar archive files

LIYANA ARACHCHIGE RANIL

53. Classes within the same archive can be signed with different

keys , and a class can be unsigned , signed with a different

keys ,signed with one key or signed with multiple keys

54. The other resources in a JAR file such as graphic images ,

audio clips can also be signed or unsigned

55. APPLETS are not allowed to do below things if the applet is

not trusted

a. File related operations such as check for the existence of a

file , read file , write file , rename , create a dir , list files ,

check file type , check the timestamp , check the file size

etc

b. Can not open network connection to other host other than

the one from which is it loaded

c. Can not read certain system properties users folder etc

d. Can not load libraries or define native methods

e. Can not start any program on the host that’s executing it

f. Windows that applets bring up are different than the

system windows

56. APPLETS can create many number of threads consuming system

resources at a larger scale and bringing down the system to a

resource scare situation

57. Byte Code verifier checks

a. JAVA byte codes contain only valid INSTRUCTIONS and

REGISTERS to use [it is an error to load from an

uninitialized register etc. The argument of an instruction

are always of the type expected by the instruction]

b. Byte code verification runs by default , but it can be turned

off by setting –Xverify:none

LIYANA ARACHCHIGE RANIL

c. On JAVA 2 systems , PRIMODIAL class loader is permitted to

OMIT byte code verification of the classes loaded from the

CLASSPATH

d. By DEFAULT the code loaded from the CLASSPATH is not

verified. Hence you can change one class property value to

private from public which is accessed in another class and

allow illegal access to the said class.

e.

f.

g.

LIYANA ARACHCHIGE RANIL

h.

i. Byte code verifier is AUTOMATICALLY applied to

RECOMPILED code, for UNMODIFIED code it does not apply.

j. Code does not OVERFLOW/UNDERFLOW OPERAND

STACK [an instruction never pops an argument off an

EMPTY STACK , not pushes a result on a FULL STACK]

k. Does not convert data types illegally or forge pointers

l. Accesses objects as correct type

m. Method calls use correct number and types of arguments

n. Reference to other classes use legal names

o. Does not VIOLATE access RESTRICTIONS

p. Class files contain CORRECT FORMAT

q. No illegal data conversion occur (Casts). Although many

checks are done my VERIFIER , some are DEFERRED until

RUNTIME

58. BYTE CODE VERIFICATION help protect the underline machine of

illegal access , crashes etc

LIYANA ARACHCHIGE RANIL

59.

JAVA WEB STRT

60. JAVA WEB START applications run in a RESTRICTED

ENVIRONMENT known as SAND BOX

61. In this SANDBOX (WEB START) , it protects users against

MALICIOUS code that could effect LOCAL files

62. Also , protects ENTERPRISES against code that could attempt to

ACCESS or DESTROY data on NETWORKS

63. UNSIGNED JAR files launched by JAVA WEB START remain in

this SAND BOX, those CAN NOT access LOCAL file system or

NETWORK

64. UNSIGNED JAR files launched by JAVA WEB SRART can use

FileOpenService , FileSaveService to REQUEST user

permission to read files from the users system. But this happens

at the discretion of the user.

LIYANA ARACHCHIGE RANIL

65. If a JAVA WEEB START application request for <all-

permissions/> under <security> the JAR file MUST BE

SIGNED

66.When user FIRST run an APPLICATION as a JAVA WEB START

signed JAR file , JAVA WEB START opens a DIALOGUE box

displaying the APPLICATIONS ORIGIN bases on the SIGNER’S

CERTIFICATE

67.With JAVA WEB START , a single application can be placed on a

WEB SERVER for deployment to a wide variety of platforms ,

LINUX , WINDOWS , SOLARIS etc

68. An APPLET can also be used to RUN using JAVA WEB START

69. JNLP defines how JAVA WEB START applications are

launched

70. JNLP stands for JAVA NETWORK LOANCHING PROTOCOLE

71. JNLP is a web centric provisioning PROTOCOL and APPLICATION

ENVIRONMENT for web deployed java 2 technology based

applications

72. The main concepts of JNLP specification are

a. Web CENTRIC application model with NO INSTALLATION

PHASE , this provides transparent and incremental updates

, incremental downloading of the application is also

provided

b. A provisioning PROTOCOL that DESCRIBES how to package

and application on a WEB SERVER. The KEY component in

this PROVISIONING is the JNLP file which describes HOW to

download and launch the application

c. Specify a STANDARD EXECUTION environment for the

application. The execution environment includes both a

SAFE environment where ACCESS to the LOCAL disk and

LIYANA ARACHCHIGE RANIL

the NETWORK is restricted for UNSTRUSTED applications ,

and UNRESTRICTED environment for TRUSTED applications

d. The RESTRICTED environment is SIMILAR to the APPLET

SANDBOX , but EXTENDED with ADDITIONAL

FUNCTIONALITY via JNLP API

73. A JNLP client is an APPLICATION or SERVICE that can launch

application on a client system from RESOURCES hosted across

the network

74. A JNLP file does not contain any binary data , instead it

contains URL(S) that point to all BINARY DATA

75.Most commonly a JNLP file describes an APPLICATION. A JNLP

file of this type is referred as APPLICATION DESCRIPTOR. It

specifies the JAR files that the application consist of , the java 2

platform it requires , optional packages that it depends on,

runtime prams , other system props etc

76. A JNLP file can also refer to OTHER JNLP files. Such fillies are

called EXTENSION DESCRIPTERS

77. EXTENSION DESCRIPTORS usually describes a component that

must be used in order to run the application

78. The resources described in the EXTENSION DESCRIPTOR

becomes part of the CLASSPATH for the application

LIYANA ARACHCHIGE RANIL

79.

80. A JNLP client can download THREE different kind of RESOURCE ,

JAR Files , IMAGES and Extension Descriptors

81. Applications launched with JNLP do not run in a BROWSER

WINDOW. But are instead separate applications that are run on

separate JVMs

82. A JNLP file can contain SYSTEM PROPERTY settings as well.

Properties defined like this are available via

System.getProperty(key).

LIYANA ARACHCHIGE RANIL

83.

84. A JNLP file may contain two kind of CODE RESOURCES, jar and

nativlib

85. nativelib , specifies a JAR file that contains NATIVE

LIBRARIES

86.

87. jar and nativelib(s) can either be downloaded EARGERLY or

LAZYLY

88.

89. An application launched with JNLP client MUST be run in an

environment according to the specification

LIYANA ARACHCHIGE RANIL

a. A preconfigured set of proxies for HTTP communication

b. A RESTRICTED environment for UNTRUSTED APPLICATIONS

and TWO EXECUTION environments for TRUSTED

APPLICATIONS. The trusted environment are “all-

permissions” and “j2ee-application-client”

environment

c. A BASIC set of services that are available through the

JAVAX.JNLP package

i. BasicService – provides set of method for querying

and interacting wit the environment. Allows opening

of a default browser window etc. Even for

applications that are running in a restricted

environment

ii. ClipBoardService – provides access to shared –

system wide clipboard. Even for applications that are

running in a restricted environment

iii. DownloadService – Allows application to control

how its own resources are cached

iv. FileOpenService – Provides method for importing

files from the LOCAL FILE SYSTEM. Even for

applications which are running in a restricted

environment

v. FileSaveService – Provides method for exporting

files TO DISK. Even for the applications that are

running in the restricted environment. Provides the

SAME level of DISK ACCESS to potentially

UNTRUSTED web deployed applications that a WEB

BROWSER provides

vi. PrintService – Provides access to printing, even for

application running in the restricted environment.

LIYANA ARACHCHIGE RANIL

vii. PersistanceService – provides method for storing

DATA locally like in Cookies. Even for the applications

running in restricted environment.

d. Ability to DOWNLOAD resources lazily as the application

executes

e. Validating signing of the JAR files

90. An application launched by a JNLP client is considered signed if

and only if ,

a. All the JAR files are SIGNED (both jar and nativlib) and can

be verified. A SINGLE CERITFICATE must be used to sign

each JAR file

91. The JNLP client must check a JAR file signing information BEFORE

it is USED (i.e before a CLASS file or another resource is

RETRIEVED from it)

92. A JNLP file can OPTIONALITY BE SIGNED as well

93. if a JNLP is running in an UNTRUSTED environment ,

a. All JAR files specified in the RESOURCES elements of the

JNLP file MUST BE downloaded from the SAME HOST

b. No NATIVLIB element can be used

c. The application MUST BE run with a SECURITYMANAGER

installed

d. The JNLP file can REQUEST EXTENSIONS and JRE from any

HOST, An application CAN NOT make a SOCKET connection

back to any of the HOSTS where JREs or EXTENSIONS are

DOWNLOADED

94. JNLP API is available to all the APPLICATION , whether those are

TRUSTED or NOT

95. Services such as BASIC SERVICE , DOWNLOAD SERVICE ,FILE

OPEN SERVICE (Allows un-trusted application to import files from

the LOCAL DISK), FILE SAVE SERVICE (Allows un-trusted

LIYANA ARACHCHIGE RANIL

application to export files to the LOCAL DISK) ,CLIPBOARD

SERVICE (Allows un-trusted application to access

CLIPBOAD),PRINT SERVICE (Allow un-trusted application to

access print service),PERSISTANCE SERVICE and EXTENSION

INSTALLER SERVICE

96. JNLP API provides following – Summary

a. Loading and Saving Files

b. Accessing the CLIPBOARD

c. Printing

d. Downloading a File

e. Displaying a Document in the default browser

f. Storing and retrieving persistence configuration

information

97. EJB 2.1 security has following capabilities

a. Declaring METHOD PERMISSIONS [Programmatic and

Declarative]

b. Mapping Roles to J2EE users and groups

98. EJB 2.1 has both PROGRAMATIC and DECLARATIVE SECURITY

capability

99. DECLARATIVE security can be at the level of allowing or

denying METHOD permissions. If there is a conditional

security check inside a method itself then

PROGRAMMATIC security MUST BE USED

100. DECLARATIVE SECURITY is done in the ejb-jar.xml , using

“assembly-descriptor”,”security-role”,”role-name”,”method-

permission”,”method”,”ejb-name”,”method-name” etc.

LIYANA ARACHCHIGE RANIL

101. ejb –jar.xml security elements

102. EJB-2.1 MUST have a DEPLOYMENT DESCRIPTOR

103. EJB 2.1 , PROGRAMMATIC SECURITY was achieved using

isCallerInRole(rolename) , getCallerPrincipal() methods

104. EJB 3.0 has made DEPLOYMENT DESCRIPTORS completely

OPTIONAL

105. EJB 3.0 users ANNOTATIONS for SECURITY declarations

106. Annotations used are @RunAs [can only be applied at

the Class

level],@RollesAllowed,@PermitAll,@DenyAll,@DeclairRole

s

LIYANA ARACHCHIGE RANIL

107. Annotations are considered to be DECLARATIVE

108. Whenever DEPLOYER needs to OVERWRITE annotated

values for SECURITY , he may use DEPLOYMENT DESCRIPTOR for

that

109. PROGRAMMATIC security in EJB 3.0 is achieved using

getCallerPrincipal() , isCallerInRole(rolename) methods

from the SESSION CONTEXT

110. SESSIONCONTEXT is injected to a SESSION BEAN via

DEPENDENCY INJECTION (@Resource) in EJB 3.0

111. AUTHENTICATION for EJB application client is done using

IOR (Interoparable Object Reference) authentication

112. IOR protocol was originally created for CORBA (COMMON

OBJECT REQUEST BROKER) , but ALL JAVA EE compliant

CONTAINERS support it

113. IOR (S) are configured in VENDOR SPECIFIC XML files

114. Only AUTHENTICATION method available for JAVA EJB

clients complying to IOR authentication is

USERNAME_PASSWORD

115. In WEB TIER , both PROGRAMMATIC and DECLARATIVE

security is SUPPORTED

116. For PROGRAMMATIC SECURITY in WEB TIRE, it users

getUserPrincipal() , isUserInRole(rolename) from

HTTPSERVLETREQUEST interface

117. Above METHOD could be USED in either SERVLET or JSPs

118. The @RunAs can also be used with SERVLET(S) and

make SERVLET run as the GIVEN ROLE

119. There is no EQUIVALENT for WEB-TIER declarative

authorization compared to BUSINESS TIRE. WEB TIER has to

use WEB.XML for deployment descriptor instead

LIYANA ARACHCHIGE RANIL

120. in WEB.XML , use “security-constraint”,”web-resource-

collection”,”auth-constraint” for DECLARATIVE SECURITY

121. Web Tier applications have number of AUTHENTICATION

mechanisms compared to EJB Client AUTHENTICATION

mechanism which is IOR where only USERNAME_PASSWORD

mechanism is available

122. WEB TIER authentication mechanisms are

BASIC,FORM,CLIENT CERT,DIGEST

123. With DECLARATIVE authorization , CONTAINER(S) do the

authorization while PROGRAMMATIC authorization , EJB(S) do

the authorization

124. WEB SERVICE SECURITY is defined in WS-Security

standards which is controlled by OASIS

125. WS-Security address AUTHENTICATION and

AUTHORIZATION (Using CREDENTIALS), MESSAGE LEVEL

DATA INTERGRITY (USING XML SIGNATURES) , MESSAGE

LEVEL AND TRANSPORT CONFIDENTIALITY (USING

ENCRYPTION)

126. In J2EE5 support for WEB SERVICE SECURITY is not

COMPLETE

127. J2EE5 compliant servers with an implementation of the

XML/HTTP binding MUST support HTTP basic AUTHENTICATION

using two properties to configure AUTHENTICATION information

(javax.xml.ws.security.auth.username) and

(javax.xml.ws.security.auth.password)

128. In addition to that, TRANSPORT level ENCRYPTION is also

supported.

129. MESSAGE LEVEL encryption is not supported or required by

standard implementation in J2EE5

LIYANA ARACHCHIGE RANIL

130. Usually WS-Security talks about AUTHENTICATION ,

SINGNATURES and ENCRYPTION

131. WS-SECURITY provides and INFINITE number of ways to

validate (Authentication) a user. The specification addresses

a. Username/Password

b. PKI through X.509 Certificates

c. Kerberos

132. Username/Password

<wsse:UsernameToken>
 <wsse:Username>scott</wsse:Username>
 <wsse:PasswordType="wsse:PasswordText">password</wsse:Password>
</wsse:UsernameToken>

133. PKI through X.509 Certificates

<wsse:BinarySecurityToken
 ValueType="wsse:X509v3"
 EncodingType="wsse:Base64Binary"
Id="SecurityToken-f49bd662-59a0-401a-ab23-
1aa12764184f">MIIHdjCCB...</wsse:BinarySecurityToken>

134. SIGNING – When a message is signed it is nearly

impossible to tamper with the message. Message signing does

not PREVENT external parties reading the message

ENCRYPT the message not to expose the content ,

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <soap:Header
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
 <wsu:Timestamp>
 <wsu:Created
 wsu:Id="Id-3beeb885-16a4-4b65-b14c-0cfe6ad26800"
 >2002-08-22T00:26:15Z</wsu:Created>
 <wsu:Expires
 wsu:Id="Id-10c46143-cb53-4a8e-9e83-ef374e40aa54"
 >2002-08-22T00:31:15Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:Security soap:mustUnderstand="1" >
 <xenc:ReferenceList>
 <xenc:DataReference

LIYANA ARACHCHIGE RANIL

 URI="#EncryptedContent-f6f50b24-3458-41d3-aac4-390f476f2e51" />
 </xenc:ReferenceList>
 <xenc:ReferenceList>
 <xenc:DataReference
 URI="#EncryptedContent-666b184a-a388-46cc-a9e3-06583b9d43b6" />
 </xenc:ReferenceList>
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 <xenc:EncryptedData
 Id="EncryptedContent-f6f50b24-3458-41d3-aac4-390f476f2e51"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
 <xenc:EncryptionMethod Algorithm=
 "http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Symmetric Key</KeyName>
 </KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue
 >InmSSXQcBV5UiT... Y7RVZQqnPpZYMg==</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </soap:Body>
</soap:Envelope>

135. LOGIN MODULE FLAGS

a. REQUIRED – LoginModule is required to succeed, if fails

authentication still continues to proceed down to the

LoginModule list

b. REQUISITE – Required to succeed , if it succeeds

authentication continues down to the Module list , if fails

control immediately return to app

c. SUFFICIENT – Not required to succeed , if it does , control

returns to the application, if fails authentication goes down

the module list

d. OPTIONAL – is not required to succeed, if succeeds or fails

still goes down the list

136. COMMONLY ENCOUNTERED SECURITY THREATS are

a. Main in the Middle attack

b. Session Hijacking / Replaying Data

LIYANA ARACHCHIGE RANIL

c. Password Cracking (Bruce Fort)

d. Phishing

e. Social Hacking (Member of opposite sex taking the

password)

f. Network Sniffing (One of the oldest method , un encrypted

data is simply read by using a network sniffing tool)

g. XSS on java script based web applications (type 0 , 1, 2)

[advent of rich internet applications has this possibility that

a J2EE architect should be aware of]

h. DOS attack (Denial of Service) is an attempt to make a

service un-available for its users. One common method for

this is saturating the target site with requests

i. DDOS (Distributed denial of Service attacks). A high scale

of DOS attack.

j.

LIYANA ARACHCHIGE RANIL

137. SAML stands for SECURITY ASERTION MARKUP

LANGUAGE; this is being used in SINGLE SIGN ON login

mechanism.

138. SAML is a standard based on XML to exchange

AUTHENTICATION and AUTHORIZATION data between

SECURITY DOMAINS

139. SAML is a product of OASIS committee

140. The single MOST IMPORTATN problem that SAML is

trying to solve is WEB BROWSER SINGLE SIGN ON

141. OpenSAML is a JAVA implementation of SAML and can be

used in SSO authentication

142.

