
LIYANA ARACHCHIGE RANIL

SHORT NOTES / DESIGN PATTERNS

1. There are two major types of design patterns

a. CORE J2EE PATTERN

b. GANG OF FOUR PATTERN (FOG Pattern)

CORE J2EE PATTERNS

1. A Pattern is an idea that has been useful in one PRACTICLE

CONTEXT and will probably be useful in others

2. PRESENTAION TIER DESIGN CONSIDERATION

a. SESSION MANAGEMENT

i. Session state can be saved on the client / SESSION

STATE ON THE CLIENT

Saving session state on the client involves

SERIALIZING and EMBEDDING the session state

within the VIEW MARKUP HTML page that is returned

to the client

1. Relatively easy to implement

2. works well when saving minimal data

3. eliminate the problem of replicating state

across severs where load balancing is done

4. There are two strategies that can be used to

save state on the client , HTML HIDDEN fields

and HTTP COOKIES

5. HTML HIDDEN FIELDS are only good for small

amount of data , if the data is larger then

performance is severely effected

LIYANA ARACHCHIGE RANIL

6. HTML HIDDED FIELDS can only save STRING

value , hence any object referenced in the

state would be STRINGIFIED

7. HTTP COOKIES are also only good for small

data sizes

8. For HTTP COOKIES there are SIZE LIMITATIONS

9. Another strategy is EMBEDDING the state to

the URL

10. When saving session state on the

CLIENT, SECURITY issues are introduced. Hence

it is required to ENCRYPT the state

ii. SESSION STATE ON THE PRESENTATION LAYER

1. When session state is maintained on the

SERVER , it is retrieved using a SESSION ID

2. It is clearly preferable to save the SESSION

state of an application which contains lot of

SESSION state related data on the SERVER

iii. SESSION STATE ON THE BUSINESS TIRE / RESOURCE

TIER

1. EJB can be used to HOLD session state in the

BUSINESS TIER

2. RELATIONAL DB can be used at the RESOURCE

TIER

b. CONTROLLING CLIENT ACCESS

i. Guard a view or portion of view from direct access by

client

1. For this you can EMBED a GUARD within the

view itself. It can be done in such a way that

All-Or-Nothing , or only portion of the view

LIYANA ARACHCHIGE RANIL

2. GUARD by CONFIGURATION. For this you can

leverage the security built in to web container

ii. Controlling the flow of the USER through the

application (Stopping DUPLICATE form submissions)

1. Synchronizer Token (Déjà vu)

iii. VALIDATION

1. Validation on the CLIENT

a. Client side validation is always a

COMPLIMENT to server side validation

2. Validation on the SERVER

iv.

c.

3. PRESENTATION TIER BAD PRACTICES

a. Control Code in Multiple VIEWS

i. Consolidate the control code INTRODUCING

CONTROLLERS and associated HELPERS – Front

Controller / View Helper

b. Exposing presentation tier data structures (HTTP SERVLET

REQUEST) to Business Tier

i. Copy Presentation tier data structure’s data to

another object such as CONTEXT OBJECT and use this

to pass value between layers or pass those values as

parameters

c. Exposing Presentation tier data structures to Domain

Objects

i. Domain Object are reusable objects and Presentation

tier data structures MUST not be used in side them

which makes tight coupling between those two

d. Allowing Duplication Form Submissions

i. Introduce Synchronization Token

LIYANA ARACHCHIGE RANIL

e. Exposing Sensitive Resources to Direct Client Access

f. Creating FAT controllers

i. If TOO MUCH code is added to the controller it

becomes cumbersome to test , debug and controller

is heavy weight

ii. Controller is the INITIAL CONTACT point as well as it

should be a DELEGATE POINT

iii. Use COMMAND OBJECT to encapsulate different

control logic, so that CONTRLLER will be light weight

and individual COMMAND objects can be TESTED

relatively in ISOLATION

g. Using HELPERS as SCRIPLETS

i. HELPERS must only expose HIGHER LEVEL

ABSTRACTIONS

4. BUSINESS TIER DESIGN CONSIDERATION

a. USING SESSION BEANS

i. Stateless versus Statefull

1. In case of stateless , the state has to be passed

from the client or retrieved from the

persistence store to stateless session bean

ii. Storing State on the Business Tier

1. If the architecture is solely based on Web-

based application then maintaining state on

the WEB TIER makes sense

2. If the APPLICATION supports different client

including web clients , java applications , other

enterprise beans etc then conversational state

can be maintained in the EJB layer using

STATEFULL beans

LIYANA ARACHCHIGE RANIL

b. USING ENTITY BEANS

i. Entity beans are best suited as CORSE GRAINED

business objects

ii. Entity bean PRIMARY KEYS (simple key or Composite

key)

iii. Business Logic in Entity Beans

1. Entity bean should contain business logic that

is self contained to manage ITS OWN DATA and

DEPENDENT OBJECTS data. It is required to

take out the business logic that requires Entity

Bean to Entity Bean interaction and put that in

a SESSION BEAN. Composite Entity and Session

Façade come in to play in this case

iv. Caching Enterprise Bean remote reference and

Handles

5. BUSINESS AND INTEGRATION TIER BAD PRACTICES

a. Mapping the Object model directly to the Entity Bean

Model

i. Results in LARGE number of FINE-GRAINED entity

beans

ii. The container and NETWORK OVERHEAD is increased

iii. Identify the PARENT DEPENDENT OBJECT

RELATIONSHIPS in the OBJECT MODEL and DESIGN

them as COARSE-GRAINED ENTITY BEANS

iv. This results in FEWER ENTITY BEANS

b. Mapping the relational model directly to the Entity Bean

Model

i. It is a BAD practice to design each row in a table as

an ENTITY BEAN

c. Mapping each use case to a SESSION BEAN

LIYANA ARACHCHIGE RANIL

i. This creates FINE GRAINED controller responsible to

service a ONE TYPE OF INTERRACTION

ii. This would SIGNIFICANTLY increase the COMPLEXITY

of the application

iii. Apply SESSION FAÇADE pattern to AGGREGATE a

GROUP of the related interactions in to a SINGLE

SESSION BEAN

iv. This results in a FEWER session beans and leverage

the advantage of applying SESSION FAÇADE

d. Exposing all enterprise bean Attributes via GETTER/SETTER

methods

i. This forces CLIENT to invoke NUMEROUS FINE-

GRAINED REMOTE invocations and creates the

potential of introducing a significant NETWORK

OVERHEAD or CHATTINESS

ii. Use a VALUE OBJECT/TRANSFER OBJECT to transfer

AGGREGATE DATA to and from the client instead of

EXPOSING GETTERS and SETTERS

e. Embedding SERVICE LOOKUPS in CLIENT CODE

i. Any changes to the LOOKUP code effects all the

clients , hence very bad

ii. Clients are exposed to the complexity of the

underline implementations and introduce

dependency on the look up code

iii. Encapsulate implementation details of the look up

mechanism using a SERVICE LOCATOR. Encapsulate

the implementation details of business tier

components such as Session, Entity Beans in a

BUSINESS DELEGATE.

LIYANA ARACHCHIGE RANIL

iv. This simplifies the client code since there is no longer

dependency on Enterprise Beans and Services

v. Business Delegate CAN intern use the SERVICE

LOCATOR

f. Using Entity Beans as READ ONLY objects

i. Using and Entity Bean as a READ ONLY object simply

WASTES EXPENSIVE resources and results in

UNNECESSARY UPDATE transactions to the

PERSISTANCE store

ii. This is due to the invocation of ejbStore() methods by

the container during entity beans life cycle.

Container does not have a way to know whether the

data was changed during the invocation of the

method , hence it assumes data is changed and

invokes ejbStore() on the bean

iii. Encapsulate all access to Data Source using DAO

pattern. This provides a CENTRALISED layer of data

access code and also SIMPLIFIES ENTITY BEAN CODE

iv. Implements access to READ ONLY functionality using

a SESSION BEAN typically as a SESSION FAÇADE

which uses DAO

v. Use VALUE LIST HANDLER to obtain LIST OF

TRANSFER OBJECTS

vi. Use TRANSFER OBJECT ASSEMBLER to obtain

COMPLEX DATA MODEL from business tier

g. Using ENITY BEANS as FINE GRAINED OBJECTS

i. Use composite entity to come up with a COARSE

GRAINED object

h. Storing ENTIRE ENTITY BEAN dependent object graph

LIYANA ARACHCHIGE RANIL

i. When complex tree structure of dependent objects

are used in an entity bean , performance can

degrade rapidly when loading an storing an entire

tree of dependent objects

ii. Identify the dependent objects that have changed

and store only those (Composite Entity and Store

Optimization Strategy[Dirty marker])

iii. Implement LAZY LOADING strategy

i. Exposing EJB related exceptions to NON-EJB clients

i. Decouple the CLIENT from the Business tier and hide

the business tier implementation details from the

client using BUSINESS DELEGATE

ii.

j. Using Entity Bean Finder methods to return a LARGE

RESULT SET

i. Using an EJB FINDER method would result in a LARGE

collection of REMOTE REFERENCES

ii. Consequently the client would have to invoke

methods on these remote references to get data.

This will become very expensive network call

iii. Implements Queries using SESSION BEANS and DAOs

to obtain a list of TRANSFER OBJECTS. Use DAO

patterns to SEARCH instead of EJB finder methods.

User VALUE LIST HANDLER to have list of TRANSFER

OBJECTS

k. Clients aggregate DATA from business components

i. The application clients typically need the DATA

model for the application from the BUSINESS TIER.

Since the model is implemented as an Entity ,

Session , and arbitrary Objects in the business tier

LIYANA ARACHCHIGE RANIL

the client MUST locate , interact with and extract the

necessary data from various business components to

construct the data model

ii. These CLIENT ACTIONS introduce NETWORK

OVERHEAD due to multiple invocations

iii. Client would become TIGHTLY coupled with the

business services as well

iv. Decouple the CLIENT from model CONSTRUCTION

and introduce TRANSFER OBJECT ASSEMBLER

l. Using EJB for LONG LIVED transactions

i. Enterprise beans are suitable for SYNCRHONOUS

processing , EJB do well if the method implemented

in a bean produces an OUTCOME within a predictable

and ACCEPTABLE time period

ii. If EJB method takes significant amount of time to

process a client requests or it if BLOCKS while

processing , this also BLOCKS CONTAINER

RESOURCES

iii. Implement ASYNCHRONOUS processing service using

a MESSAGE-ORIENTED middleware with a JMS API to

facilitate long lived transactions

iv. Use SERVICE ACTIVATOR hence

m. Stateless Session Bean RECONSTRUCT conversational state

for each invocation

i. Analyze the INTERACTION model before choosing

between STATELESS or STATEFUL

n.

PRESENTATION TIRE REFACTORING

LIYANA ARACHCHIGE RANIL

1. INTRODUCE A CONTROLLER – Control LOGIC is scattered

throughout the application , typically DUPLICATED in MULTIPLE

JSP views

a. Extract control logic to ONE or MORE controller

classes that serve as the INITIAL contact point for

handling client requests

2. INTRODUCE SYNCHRONIZER TOKEN – Clients make

DUPLICATE resource requests.

3. LOCALIZE DISPARATE LOGIC – Business logic and

presentation formatting is intermingled within JSP.

a. Extract business logic to HELPER classes so that JSP

and CONTROLLERS can reuse (Business Logic is the one

which is sent to HELPER CLASSES)

4. HIDE PRESENTATION TIER SPECIFIC FROM BUSINESS TIER

– Request handling or protocol related data structures are

exposed from the presentation tier to business tier

a. Pass values between layers using more GENERIC

data structures

5. REMOVE CONVERSIONS FROM VIEW – Portions of MODEL are

converted to DISPLAY within a VIEW component

a. Extract all conversion code from view and

encapsulate it in one or more VIEW HELPERS

6. HIDE RESOURCES FROM A CLIENT – Certain resources such

as JSP views are directly accessible by clients though access

should be restricted

a. Hide certain resources via CONTAINER

CONFIGURATION or using a controller component

BUSINESS AND INTEGRATION TIER REFACTORING

LIYANA ARACHCHIGE RANIL

1. WRAP ENTITIES WITH SESSION – Entity beans in BUSINESS

tier are EXPOSED To clients in another tier

a. Use a SESSION FAÇADE to encapsulate ENTITY

BEAN

2. INTRODUCE BUSINESS DELEGATE – Session BEANS in the

BUSINESS tier are exposed to clients in another tier

a. Use BUSINESS DELEGATE to decouple the TIERS

and HIDE the implementation details

3. MERGE SESSION BEANS – There is one to one mapping

between SESSION beans and ENITITY beans

a. Maps business services to SESSION BEANS ,

eliminate or combine SESSION BEANS that act

solely as ENTITY BEAN PROXIES into SESSION

BEANS that represents COARSE GRAINED

business services

4. REDUCE INTER ENTITY BEAN COMMUNICATION – Inter

entity bean relationship introduces OVERHEAD in the MODEL

a. Reduce the INTER ENTITY BEAN communication

using COARSE GRAINED entity beans (COMPOSITE

ENTITY)

5. MOVE BUSINESS LOGIC TO SESSION – Inter ENTITY bean

relationships introduce OVERHEAD in the MODEL

a. Encapsulate WORKFLOW related to INTER ENTITY

BEAN relationships in a SESSION BEAN (SESSION

FAÇADE)

GENERAL REFACTORING

1. SEPARATE DATA ACCESS CODE – Data Access Code is

embedded within a class that has other RESPONSIBILITIES

LIYANA ARACHCHIGE RANIL

a. Extracts the DATA Access code to a new class

and move the new class LOGICALLY and / or

PHYSICALLY closer to the DATA SOURCE

2. USE A CONNECTION POOL – data base connections are

not shared , instead clients manage their own connections

for making data base invocations

a. Use a Connection Pool to pre initialize multiple

connections improving SCALABILITY and

PERFORMANCE

s/n

o

If you are looking for this Find it Here

PRESENTATION TIER PATTERNS
1 Preprocessing or Post Processing of

REQUESTS

Intercepting Filter

2 Adding Logging, Debugging or some

other behavior to be completed FOR

EACH REQUEST

Front Controller ,

Intercepting Filter

3 Centralizing CONTROL for REQUEST

HANDLING

Front Controller

,Intercepting Filter ,
4 Creating a generic COMMAND

interface or CONTEXT object for

reducing coupling between control

component and helper components

Front Controller ,

Application Controller,

Context Object

5 Whether to implement a Controller as

a Servlet or JSP

Front Controller

6 Creating a VIEW from NUMEROUS SUB

views

Composite View

7 Whether to implement the VIEW as a

SERVLET of JSP

View Helper

8 How to PARTITION the view and Model View Helper
9 Where to encapsulate PRESENTATION

related data formatting LOGIC

View Helper

LIYANA ARACHCHIGE RANIL

10 Combining Multiple Presentation

patterns

Intercepting Filter ,

Dispatcher View
11 Where to encapsulate VIEW

MANAGEMENT and NAVIGATION LOGIC

which involves CHOOSING and VIEW

and DISPATCHING it

Service to Worker,

Dispatcher View

12 Where to store SESSION state Session state in Web Tier

, Session State on

Business Tier , Session

state on Client Tier
13 Controlling client access to a certain

view or a sub-view

Controlling client

access , hide resource

from client
14 Controlling the FLOW of request in to

the application

Synchronizer Token ,

duplicate form

submission
15 Controlling duplicate form submission Introduce Synchronizer

token , Duplicate form

submission
16 Reducing coupling between

PRESENTATION and BUSINESS Tier

Business delegate

17 Partition data access code DAO
BUSINESS TIER PATTERNS
1 Minimize coupling between

presentation and business tier

Business Delegate

2 Cache business service for clients Business Delegate
3 Hide implementation details of

Business Service lookup , creation and

access

Business Delegate ,

Service Locator

4 Isolate VENDOR and TECHNOLOGY

dependencies for service lookup

Service Locator

5 Provide uniform method for business

service lookup and creation

Service Locator

6 Hide the complexity and Service Locator

LIYANA ARACHCHIGE RANIL

dependencies of EJB beans and JMS

component look up
7 Transfer Data between business

object and client access tier

Transfer Object

8 Provide SIMPLER uniform INTERFACE

to remote CLIENTS

Business Delegate ,

Session Façade ,

Application Service
9 Reduce Remote method invocations

by providing COARSE-GRAINED

method access to business tier

components

Session Façade

10 Manage the relationships between

Enterprise bean components and hide

the COMPEXITY of interactions

Session Façade

11 Protect the Business Tier components

from DIRECTLY EXPOSING to CLIENTS

Session Façade ,

Application Service
12 Provide Uniform boundary access to

business tier components

Session Façade ,

Application Service
13 Implement complex conceptual

domain model using objects

Business Objects

14 Identify COARSE-GRAINED objects and

DEPENDENT objects for Business

Objects and Entity Bean design

Business Object ,

Composite Entity

15 Design for COARSE-GRAINED entity

beans

Composite entity

16 Reduce or eliminate the entity bean

clients’ dependency on the DATABASE

schema

Composite Entity

17 Reduce or eliminate entity bean to

entity bean remote relationships

Composite Entity

18 Reduce number of Entity beans and

improve manageability

Composite Entity

19 Obtain the application data model for

the application from various Business

Transfer Object

Assembler

LIYANA ARACHCHIGE RANIL

Components
20 On the fly construction of the

application data model

Transfer Object

Assembler
21 Hide the complexity of the data model

CONSTRUCTION from the client

Transfer Object

Assembler
22 Provide business tier query and results

list processing facility

Value List Handler

23 Minimize the overhead of using EJB

finder methods

Value List Handler

24 Provide QUERY RESULTS CACHING for

the CLIENT on the SERVER side with

FORWARD and BACKWARD

navigability

Value List Handler

INTEGRATION TIER
1 Minimize COUPLING between Business

and resource tier

Data Access Object

2 Centralize access to Resource Tier Data Access Object
3 Minimize Complexity of Resource

access from Business tier components

Data Access Object

4 Provide Asynchronous Processing for

enterprise applications

Service Activator

5 Send and Asynchronous request to a

Business Service

Service Activator

6 Asynchronously process a request as a

set of parallel tasks

Service Activator

7 Transparently Persist and Object

Model

Domain Store

8 Implement a CUSTOM persistence

FRAMEWORK

Domain Store

9 Expose a WEB SERVICE using XML and

standard Internet Protocol

Web Service Broker

10 Aggregate and Broker existing

services as WEB SERVICES

Web Service Broker

LIYANA ARACHCHIGE RANIL

1. PRESENTATION TIER PATTERN

a. Intercepting Filter

LIYANA ARACHCHIGE RANIL

i. You want to INTERCEPT and MANIPULATE request

and a response BEFORE and AFTER the request is

PROCESSED

ii. Checking the session validity , checking request

path violations , checking the BROWSER type ,

checking the ENCODING that the client is using ,

checking if the request is ENCRYPTED or

COMPRESSED etc could be done using an

INTERCEPTING FILTER

iii. Sharing INFORMATION between filters CAN BE

INEFFICIENT

iv.

b. Front Controller

i. Centralized access point for PRESENTATION tier

REQUEST handling

ii. Without centralized place the CONTROL code that is

common across MULTIPLE request would have to be

DUPLICATED

iii. Avoid duplicate control logic , common logic for

multiple request , separate system processing logic

LIYANA ARACHCHIGE RANIL

from the View , centralize controlled access points to

the system

iv. Use FRONT CONTROLLER as the INITIAL point of

contact

v. A controller TYPICALLY users a APPLICATION

CONTROLLER for ACTION and VIEW management

vi. Contains PROTOCOLE SPECIFIC code

vii.

c. Context Object

i. Avoid PROTOCOL specific SYSTEM information

OUTSIDE of its RELEVANT context

ii. Ex; HTTPREQUEST must not be passed between

layers , instead HTTPREQUEST values must be

transferred to a CONTEXT object and that object

must be used

iii. Application would not be coupled to a SPECIFIC

PROTOCOL

iv. Context Objects MAIN goal is to SHARE SYSTEMS

INFORMATION IN A PROTOCOL INDEPENDENT WAY ,

Transfer Objects MAIN goal is to REDUCE NETWORK

COMMUNICATION , IMPROVING PERFORMACE

LIYANA ARACHCHIGE RANIL

v.

d. Application Controller

i. Centralize and Modularize ACTION and VIEW

management

ii. Resolving the incoming request to an ACTION is

ACTION MANAGEMENT

iii. Locating an APPROPRIATE VIEW is VIEW

MANAGEMENT

iv. Reuse action an view management , improve request

handling EXTENSIBILITY , improve code MODULARITY

and MAINTAINABILITY

LIYANA ARACHCHIGE RANIL

v.

e. View Helper

i. Separate a view from its PROCESSING LOGIC

ii. Want to use TEMPLATE based views such as JSP ,

want to AVOID embedding program logic in the

VIEW , Want to SEPARATE programming logic from

the view to facilitate DIVISION of LABOR between

SOFTWARE DEVELOPERS and WEB PAGE DESIGNERS

iii.

f. Composite View

LIYANA ARACHCHIGE RANIL

i. Build a view from MODULAR , ATOMIC component

parts that are COMBINED to create a COMPOSITE

WHOLE, while managing the content and the LAYOUT

independently

ii.

g. Service to Worker

i. Perform CORE request HANDLING and INVOKE

BUSINESS LOGIC before control is passes to the VIEW

ii. Business and DATA service is invoked BEFORE the

view is rendered

iii. How sophisticated is the Control Logic , How dynamic

is the RESPONSE content , How sophisticated is the

BUSINESS LOGIC and MODEL

iv. Want specific BUSINESS logic executed to SERVICE a

request in order to RETRIEVE content that will be

used to GENERATE a DYNAMIC response

v. Have View selections which may depend on the

response from BUSINESS SERVICE

LIYANA ARACHCHIGE RANIL

vi.

h. Dispatcher View

i. Want a VIEW to handle a REQUEST and GENERATE a

RESPONSE , while managing LIMITED amount of

BUSINESS PROCESSING

ii. Have static views , have views GENERATED from an

EXISTING MODEL , have views which are

INDEPENDENT of any BUSIENSS SERVICE RESPONSE ,

have LIMITED business processing

LIYANA ARACHCHIGE RANIL

iii.

2. BUSINESS TIER PATTERN

a. Business Delegate

i. Want to hide clients from the COMPLEXITY of remote

communication with business service components

ii. Want to access business tier components from your

presentation tier components clients , such as

DEVICES , WEB SERVICES and RICH CLIENTS

iii. Want to AVOID un necessary invocation of REMOTE

SERVICES

iv. Want to translate network exceptions into

APPLICATION or USER EXCEPTIONS

v. Want to hide the details of SERVICE CREATION ,

RECONFIGURATION and INVOCATION RETRIES from

the client

vi. Reduced coupling , improved maintainability ,

translation of business exceptions , improves

availability , expose a simpler uniform interface to

LIYANA ARACHCHIGE RANIL

the business tier , improved performance ,

introduced additional layer , hides remoteness

vii.

b. Service Locator

i. Want to transparently locate business components

and services in a uniform manner

ii. Want to use JNDI lookup and business components ,

JMS components , data sources

iii. Centralize and reuse the implementation of lookup in

J2EE clients

iv. Encapsulate vendor dependencies for registry

implementation

v. Avoid performance overhead related to INITIAL

context and Service Lookups

vi. Re-establish a CONNECTION to previously accessed

enterprise beans instances using HANDLE

vii. If you need to locate a WEB SERVICE published in

UDDI , Web Service Locator can be used

LIYANA ARACHCHIGE RANIL

viii.

c. Session façade

i. To expose BUSINESS COMPONENTS and SERVICES to

REMOTE CLIENTS

ii. Address two issues, CONTROLLING CLIENT ACCESS to

Business Objects , and LIMITING NETWORK TRAFFIC

between remote clients and FINE-GRAINED business

components and services

iii.

d. Application Service

i. Want to CENTRALIZE business logic ACROSS several

business tier components and services

LIYANA ARACHCHIGE RANIL

ii. Want to MINIMISE business logic in SESSION

FAÇADE(S)

iii. If business logic is embedded in Session Facades ,

the reusability of that logic is effected , hence use

APPLICATION SERVICE

iv. When you see BUSINESS LOGIC is becoming

duplicated in SESSION FAÇADE , it is good to

introduce APPLICATION SERVICE

v.

e. Business Object

i. Have a CONCEPTUAL domain model with BUSINESS

LOGIC and RELATIONSHIP

ii. Have a conceptual model with sophisticated business

logic , validation and business rules

LIYANA ARACHCHIGE RANIL

iii.

f. Composite Entity

i. Want to use ENTITY beans to implement the

CONCEPTUAL domain model

ii. Want to AVOID drawbacks of remote entity beans ,

such as network overhead , inter-entity bean

relationships

iii. Want to implement PARENT-CHILD relationship

efficiently when implementing BUSINESS OBJECTS as

ENTITY BEANS

iv. Want to encapsulate PHYSICAL DB design from the

clients

LIYANA ARACHCHIGE RANIL

v.

g. Transfer Object

i. Want to TRANSFER multiple data elements over a

TIER

ii. Reduces Network traffic , Simplifies remote object

and interface , Transfer more data in fewer calls

,reduce code duplication, introduces stale transfer

object

LIYANA ARACHCHIGE RANIL

iii.

h. Transfer Object Assembler

i. Want to obtain an application model that aggregates

transfer objects from several business components

ii. Transfer object Assembler helps BUILD an application

model as a COMPOSITE TRANSFER OBJECT

iii. Transfer Object Assembler AGGREGATES multiple

TRANSFER OBJECTS from various business

components and services and return to the client

LIYANA ARACHCHIGE RANIL

iv.

i. Value List Handler

i. Have a REMOTE clients that wants to ITERATE over a

LARGE RESULT SET

ii. Want to AVOID overhead of using EJB FINDER

methods , want to implement READ-ONLY use case

that does not need transactions , Wants to provide

CLIENTS with an EFFICIENT search and iterate

mechanism over a large result set , wants to

maintain the search results on the server side

LIYANA ARACHCHIGE RANIL

iii. Use VALUE LIST HANDLER to SEARCH , CACHE results

and allow the clients to TRAVERS and select ITEMS

from the results

iv.

3. INTEGRATION TIER PATTERN

a. Data Access Object

i. Want to ENCAPSULATE data access and manipulation

in a separate layer

ii. Want to decouple the PERSISTENT STORAGE

implementation from the rest of the application

iii. Want to provide UNIFORM data access API for a

persistence mechanism to various types of data

sources , such as RDBMS , LDAP , OODB , XML

repositories , FLAT files etc

LIYANA ARACHCHIGE RANIL

iv. Want to organize data access logic and encapsulate

proprietary features to facilitate maintainability and

portability

v.

b. Service Activator

i. Want to INVOKE services ASYNCHRONOUSLY

ii. Want to integrate PUBLISH/SUBSCRIBER and POINT

to POINT messaging to enable ASYNCRONOUS

processing services

iii. ServiceActivator can be implemented as a POJO

service activator or a Message Driven Bean

iv. In case of POJO service activator , many methods

need to be written while MBD , only onMessage

method needs to be written

v. Want to perform BUSINESS TASKS that is logically

COMPOSED of SEVERAL BUSINESS TASKS

LIYANA ARACHCHIGE RANIL

vi.

c. Domain Store

i. Want to SEPARATE persistence FROM the OBJECT

MODEL

ii. Want to avoid putting persistence details in to the

Business Objects

iii. Do not want to use Entity Beans

iv. The application might be running in a WEB SERVER

v. Object model users INHERITANCE and COMPLEX

RELATIONSHIPS

LIYANA ARACHCHIGE RANIL

d. Web Service Broker

i. Want to provide access to ONE or MODE services

using XML and WEB PROTOCOLS

ii. Want to REUSE and EXPOSE existing services to

CLIENTS

iii. Want to MONITOR an potentially LIMIT the usage of

EXPOSED services

iv. Web service broker is a WEB SERVICE that serves as

a BROKER to ONE or MODE services. Those services

can be J2EE services , such as SESSION BEANS ,

APPLICATION SERVICES or LEGACY EIS SYSTEMS

v. SessionBeanJAXBroker , POJOJAXBroker , POJOBroker

are few realizations of web service brokers

LIYANA ARACHCHIGE RANIL

vi.

GANG OF FOUR (GOF) PATTERNS

1. CREATIONAL PATTERNS

a. Abstract Factory

i. Provides and INTERFACE for crating FAMILIES of

RELATED or DEPENDENT objects without specifying

their CONCREATE CLASSES

ii. A hierarchy that encapsulate : many possible

platforms and construction of suite of PRODUCTS

iii. The new operator considered harmful

LIYANA ARACHCHIGE RANIL

iv.

v. Sometimes Creational patterns are competitive,

there are cases wither PROTOTYPE or ABSTRACT

FACTORY could be used profitable. At other times

LIYANA ARACHCHIGE RANIL

they are complementary. Abstract factory might

store a set of PROTOTYPES from which components

get built

vi. Abstract Factory , Builder and Prototype can USE

Singleton in their implementation

vii. Abstract Factory , Builder and Prototype defines a

FACTORY object that is responsible for knowing and

creating the class of product objects and make it

parameter of the system

viii. Abstract Factory has the Factory object producing

objects of several classes

ix. Builder has a Factory object building a COMPLEX

product incrementally using a corresponding

complex PROTOCOL

x. Prototype has the FACTORY object building a product

by copying a PROTOTYPE object

xi. Abstract Factory can be used as an ALTERNATIVE to

FAÇADE to hide platform specific classes

xii. Abstract Factory EMPHASIS on FAMILY of RELATED

PRODUCTS and this is the most important one

xiii. Often design starts out using a FACTORY METHOD

(less complicated) and EVOLVE towards ABSTRACT

FACTORY , PROTOTYPE or BUILDER

LIYANA ARACHCHIGE RANIL

LIYANA ARACHCHIGE RANIL

LIYANA ARACHCHIGE RANIL

b. Builder

i. Separate the construction of a COMPLEX object from

its REPRESENTATION , so that the SAME

CONSTRUCTION process can create DIFFERENT

REPRESENTATION

ii. An application needs to create ELEMENTS of a

COMPLEX AGGREGATE

LIYANA ARACHCHIGE RANIL

iii. The DIRECTOR invokes BUILDER services as it

interprets the external format

iv. The BUILDER creates parts of the complex object

each time it is called and maintains all the

INTERMEDIATE STATE

v. Afford FINER control over CONSTRUCT PROCESS

vi. In FAST FOOD stores this pattern is in use

(Construction of a Childs meal)

vii. Check list

1. Common Input and many possible

representations

2. Encapsulate parsing of the common input in a

READER class

3. Design a standard PROTOCOLE for creating all

possible output REPRESENTATIONS. Capture

the steps of this protocol in a BUILDER

INTERFACE

4. Define a builder derived class for each target

REPRESENTATION

5. Client creates READER object and a BUILDER

object and register the latter with the former

6. Client asks the READER to construct

7. Client ASK the BUILDER to return the results

LIYANA ARACHCHIGE RANIL

viii.

ix.

LIYANA ARACHCHIGE RANIL

LIYANA ARACHCHIGE RANIL

c. Factory Method

i. Define INTERFACE for creating an object, BUT let

SUBCLASS decide which class to INSTANTIATE.

Factory method lets a class DEFER instantiation to

SUB CLASSES

ii. The new operator considered harmful

iii. A FRAMEWORK needs to standardize the

architectural model for a range of applications , but

allow for individual application to define their own

domain objects and provide for their instantiations

iv. Factory method is to creating objects as Template

methods to implement and Algorithm

LIYANA ARACHCHIGE RANIL

v. Factory method is SIMILAR to ABSTRACT FACTORY ,

but without EMPHASIS on FAMILIES

vi. Client is totally decoupled from the implementation

details of the derived class , Polymorphic creation is

now possible

vii. Injection molding process resembles Factory Method

viii.

ix.

x.

LIYANA ARACHCHIGE RANIL

xi. If there is an INHERITANCE HIERACHY that exercise

polymorphism , consider adding a polymorphic

creation capability by defining a static factory

method in the base class

xii. Abstract Factory classes are often implemented with

Factory methods , but they can also be implemented

using Prototype as well

xiii. Factory Method : creation through inheritance ,

Prototype : creation through delegation

xiv. Prototype DOES NOT require SUB CLASSING , but it

requires INITIALIZING , Factory Method REQUIRES

sub classing , but DOES NOT require INITIALIZING

xv.

d. Prototype

LIYANA ARACHCHIGE RANIL

i. Specify the kinds of objects to create using a

prototypical instance, and create new object by

copying this prototype

ii. Co-Opt one instance of a class as a breeder for all

future instances

iii. The new operator considered harmful

iv. The Factory knows how to find the correct

PROTOTYPE , and each RPODUCT knows how to

SPAWN new instances of itself

v. Division of a CELL is an example of prototype

vi. Check List

1. Add a clone method to the existing product

hierarchy

2. design a REGISTRY that maintains a cache of

prototypical objects

3. Design a Factory method that may accept an

argument , find the correct prototype and call

clone on that object

4. Prototypes are useful when OBJECT

INITIALIZATION are expensive

5. Prototype does not require a class , it only

requires an OBJECT

LIYANA ARACHCHIGE RANIL

LIYANA ARACHCHIGE RANIL

e. Singleton

i. Ensure the class has only one INSTANCE , and

provide a global point of access to it

ii. Encapsulate the “Just-In-Time initialization” or

“Initialization on fist use”

iii. Applications need one and only one instance of an

Object. Additionally LAZY initialization and GLOBLE

access are necessary

iv. Singleton should be considered only if

LIYANA ARACHCHIGE RANIL

1. Ownership of the single instance can not be

reasonably assigned

2. Lazy initialization is desirable

3. Global access is not otherwise provided for

v. Singleton pattern can be extended to support access

to an application specific number of instances

vi. Abstract Factory , Builder , and Prototype can use

Singleton in their implementation

vii. Façade objects are often Singleton

LIYANA ARACHCHIGE RANIL

viii.

2. STRUCTURAL PATTERNS

LIYANA ARACHCHIGE RANIL

ADAPTOR is walking on the BRIDGE; this bridge is made out of

COMPOSITE material. It is also DECORATED with a FAÇADE. The

façade has FLYWEIGHTS attached to it. On the other side of the

bridge there is a PROXY waiting to meet adaptor

a. Adapter

i. Convert the interface of a class into another interface

that the CLIENT expects, ADAPTOR lets classes work

together that could not otherwise because of

IMCOMPATIBLE interfaces

ii. Wrap an EXISTING class with a NEW INTERFACE

iii. IMPEDENCE mismatch an OLD component to a new

system

iv. An “Off the shelf” component offers compelling

functionality that you would like to reuse , but its

view of the world is not COMPATIBLE with the

PHILOSOPHY and the ARCHITECTURE of the system

currently being DEVELOPED

v. This can be implemented either with the

INHERITANCE or with AGGREGATION

vi. Adaptor makes things work after they are DESIGNED,

bridge makes them work BEFORE THEY ARE

vii. BRIDGE designed upfront to let the ABSTRACTION

and IMPLEMENTATION vary independently , ADAPTOR

retrofitted to make unrelated classes work together

viii. ADAPTOR provides a DIFFERENT interface to its client

, PROXY provides the SAME , DECORATOR provides

and ENHANCED one

LIYANA ARACHCHIGE RANIL

ix. ADAPTOR is meant to change the interface of an

EXISTING object , Decorator ENHANCES object

without changing the interface

x. FAÇADE defines a NEW interface whereas ADAPTOR

REUSES an OLD interface

xi. ADAPTOR makes TWO EXISTING interfaces work

TOGETHER as opposed to DEFINING NEW one

LIYANA ARACHCHIGE RANIL

xii.

LIYANA ARACHCHIGE RANIL

b. Bridge

i. Decouple an ABSTRACTION from its

REPRESENTATION so that the two can vary

INDEPENDENTLY

ii. PUBLISH interfaces in an INHERITANCE hierarchy ,

and BURY IMPLEMENTATION in its own INHERITANCE

HIERACHY

iii. PROBLEM: Hardening of the software arteries has

occurred by using sub classing of an ABSTRACT class

to provide ALTERNATIVE implementations. This locks

in COMPILE TIME binding between INTERFACES and

IMPLEMENTATIONS

LIYANA ARACHCHIGE RANIL

iv.

v. The INTERFACE object is the “HANDLE” known and

used by the CLIENT , while the IMPLEMENTATION

object or “BODY” is safely encapsulated to ensure

that it may CONTINUE to EVOLVE or be ENTIRELY

REPLACED

vi. USE BRIDGE pattern when

1. Want RUN-TIME binding of the

IMPLEMENTATION

LIYANA ARACHCHIGE RANIL

2. Have proliferation of CLASSES resulting from a

COUPLED interfaces and numerous

implementations

vii. Improved EXTENSIBILITY

viii.

ix. State, Strategy, BRIDGE have similar solution

structures, they all share elements of BODY /

HANDLE idiom. They DIFFER in INTENT, they resolve

DIFFERENT PROBLEMS

x. The STRUCTURE of STATE and BRIDGE are identical.

The two patterns use the SAME structure to SOLVE

different problems

LIYANA ARACHCHIGE RANIL

xi.

LIYANA ARACHCHIGE RANIL

xii.

xiii.

c. Composite

LIYANA ARACHCHIGE RANIL

i. Compose objects in to TREE structure to REPRESENT

WHOLE/PART hierarchies. COMPOSITE lets clients

treat individual objects and COMPOSITIONS of objects

UNIFORMLY

ii. Recursive Composition

iii. PROBLEM: Application NEEDS to manipulate a

HIERACHICAL collection of “PRIMITIVE” and

“COMPOSITE” objects. Processing of PRIMITIVE object

is handled one way and processing of COMPOSITE

object is handled DIFFERENTLY. Having to QUERY the

type of each object before attempting to process is

NOT DESIRABLE

iv.

v. Check List

1. Ensure that the problem is WHOLE/PART

hierarchical relationships

2. Creates a LOWEST COMMON DENOMINATOR

interface that makes your containers and

containees interchangeable

vi. Composite and Decorator both have SIMILAR

structure diagrams

LIYANA ARACHCHIGE RANIL

vii. Composite can be traversed with an ITERATOR ,

VISITOR can apply an operation over a COMPOSITE

viii. DECORATOR is designed to let you add

RESPONSIBILITIES to OBJECTS without SUBCLASSING

ix. COMPOSITES focus is NOT on EMBELLISHMENT but on

REPRESENTATION

x. The whole point of the COMPOSITE pattern is that the

COMPOSITE can be treated ATOMICALLY

xi.

LIYANA ARACHCHIGE RANIL

xii.

d. Decorator

i. Attach ADDITIONAL RESPONSIBILITIES to an object

DYNAMICALLY. DECORATOR provides a FLEXIBLE

ALTERNATIVE to SUBCLASSING for extending

functionality

ii. Client specified EMBELISHMENT of a CORE object by

recursively wrapping it

iii. Wrapping a GIFT , putting it in a BOX , Wrapping the

BOX

LIYANA ARACHCHIGE RANIL

iv. You want to ADD BEHAVIOURS or STATE to

INDIVIDUAL objects at RUN TIME. Inheritance is not

FEASEABLE because it is STATIC and APPLIES to an

ENTIRE class

v.

vi.

vii. This pattern allows responsibilities to be added to an

Object, not METHODS to an Objects interface. The

interface presented to the client MUST remain

CONSTANT

LIYANA ARACHCHIGE RANIL

viii.

ix. Decorator provides and ENHANCED interface ,

Adapter provides a DIFFERENT interface to its

subject, proxy provides the SAME interface

x. Decorator is designed to let you add

RESPONSIBILITIES to objects without sub classing

xi. Decorator and Proxy have different purpose , but

similar structures. Both describes how to provide

level of INDIRECTION to another object

xii. DECORATOR lets you change the SKIN of an object,

STRATEGY lets you change the GUTS

LIYANA ARACHCHIGE RANIL

xiii.

xiv.

LIYANA ARACHCHIGE RANIL

xv.

e. Façade

i. Provides a unified interface to a set of interfaces in a

SUBSYSTEM

ii. Façade defines a HIGHER level interface that makes

the SBSYSTEM easier to use

iii. Wrap a COMPLICATED sub system with a SIMPLER

interface

iv. PROBLEM : A segment of the client community needs

a SIMPLIFIED interface to the overall FUNCTIONALITY

of a COMPLEX sub system

v. Façade discusses ENCAPSULATIN a complex

subsystem within a SINGLE interface object. This

promotes DECOUPLING the SUB SYSTEM from its

potentially many clients

LIYANA ARACHCHIGE RANIL

vi. Façade should be FAIRLY SIMPLE advocate or

facilitator , it should not become an ALL-KNOWING

ORACLE or GOD object

vii.

LIYANA ARACHCHIGE RANIL

viii.

ix. Façade defines a NEW INTERFACE, whereas ADAPTER

uses and OLD interface.

x. Façade objects are often SINGLETONS , since only

one Object is needed

xi.

LIYANA ARACHCHIGE RANIL

xii.

xiii.

LIYANA ARACHCHIGE RANIL

xiv.

f. Flyweight

i. Use sharing to support LARGE NUMBER of FINE-

GRAINED objects efficiently

ii. The MOTIF GUI strategy of REPLACING heavy-weight

WIDGETS with light-weight GADGETS

iii. PROBLEM : designing objects down to the lowest

levels of system “GRANULARITY” provides optimal

“FLEXIBILITY’, but can be unacceptably EXPENSIVE in

terms of PERFORMANCE and MEMORY usage

LIYANA ARACHCHIGE RANIL

iv. Each FLYWEIGHT object is divided into two pieces,

STATE-DEPENDENT (EXTRINSIC) , STATE-

INDEPENDENT (INSTRINSIC)

v. INTRINSIC state is stored in the FLYWEIGHT object ,

EXTRINSIC state is stored or computed by the CLIENT

vi. FLYWEIGHTS are stored in a FACTORY’S REPOSITORY,

the client restrain herself creating Flyweight directly

vii.

viii. Create a FACTORY that can cache and reuse existing

class instances

LIYANA ARACHCHIGE RANIL

ix.

LIYANA ARACHCHIGE RANIL

x.

g. Proxy

i. Provides a SURROGATE or PLACEHOLDER for another

object to CONTROL access to it

LIYANA ARACHCHIGE RANIL

ii. Use an EXTRA LEVEL of INDIRECTION to support

distributed , controlled or intelligent access

iii. Add a wrapper and delegation to protect real

component from undue complexity

iv. PROBLEM : Need to support RESOURCE HUNGRY

object and do not want to INSTANTIATE such objects

unless and until they are actually REQUESTED by the

CLIENT

v. There are FOUR common situations in which the

PROXY pattern in applicable

1. A VITUAL PROXY : a place holder for EXPENSIVE

to CREATE objects

2. A REMOTE PROXY : provides a LOCAL

REPRESENTATIVE for an object that resides in a

different ADDRESS SPACE, this is what the

STUB code in RPC and CORBA provides

3. A PROTECTIVE PROXY: controls the access to a

SENSITIVE MATTER object. The surrogate

object checks that the caller has the access

permissions required prior to forwarding the

request

4. A SMART PROXY: interposes ADDITIONAL

actions when an object is accessed. Typically

CONTROLLING the NUMBER OF REFERENCE to

the real object so that when there are no

references it can be FREED, LOADING a

PERSISTANCE object into MEMORY when its

first accessed , checking that the real object is

LOCKED before it is accessed to ensure that no

other object can CHANGE it

LIYANA ARACHCHIGE RANIL

vi.

vii. CHECK LIST

1. Define an INTERFAC that will make the PROXY

and the ORIGINAL component interchangeable

2. Consider defining a FACTORY that can

encapsulate the decision of whether a PROXY

or ORIGINAL object is desirable

3. The wrapper class holds a POINTER to the REAL

class and implements the interface

4. The pointer may be initialized at the

CONSTRUCTION ot on FIRST USE

LIYANA ARACHCHIGE RANIL

viii. Decorator and Proxy have different purposes, but

similar structures. Both describes how to provide a

level of indirection to another object

ix.

x.

LIYANA ARACHCHIGE RANIL

3. BEHAVIORAL PATTERNS

As a boss I have a RESPONSIBILITY to COMMAND my

INTERPRETER to MEADIATE my interviews. He should

OBSERVE all the candidates and keep their STATE in his

MEMORY. Later he should ITERATE over all the candidate

results using an appropriate STRATEGY and prepare a

TEMPLATE along with a VISITOR

a. Chain of Responsibility

i. Avoid coupling the sender of a request to its receiver

by giving MORE THAN ONE OBJECT to HANDLE the

request.

ii. CHAIN the RECEIVING objects and PASS the REQUEST

along the CHAIN until and object HADLES it

iii. Single processing PIPELINE with many possible

HANDLERS

iv. PROBLEM : There is a potentially variable number of

“HANDLERS ” or PROCESSING ELEMENTS or NODE

objects and a STREAM of REQUESTS that must be

handled

v. Need to efficiently process the requests without

HARD WIRING handler relationships and precedence

LIYANA ARACHCHIGE RANIL

vi.

vii. Chain of Responsibility SIMPLIFIED OBJECT

INTERCONNECTION

viii. Do not USE Chain of responsibility when each request

is ONLY handled by ONE HANDLER or when the

CLIENTS knows which SERVICE OBJECT should handle

the request

ix.

x. Chain of Responsibility, Command , Mediator and

Observer address how you can DECOUPLE SENDERS

and RECEIVERS

LIYANA ARACHCHIGE RANIL

xi.

xii.

LIYANA ARACHCHIGE RANIL

xiii.

b. Command

i. Encapsulate a request as an Object ,thereby letting

you PARAMETERIZE clients with DIFFERENT

REQUESTS , QUEUE of LOG requests and SUPPORT

undoable operations

ii. Command DECOUPLES the object that INVOKES the

OPERATION from the one that KNOWS how to

PERFORM it

iii. PROBLEM : need to issue requests to objects

WITHOUT knowing anything about the OPERATION

being REQUESTED or the RECEIVER of the REQUEST

LIYANA ARACHCHIGE RANIL

iv.

v. Command objects can be thought of as TOKENS that

are CREATED by ONE CLIENT and PASSED to

ANOTHER CLIENT that has resource for DOING IT

vi.

vii. CHAIN OF RESPONSIBILITY , COMMAND ,

MEADIATOR , OBSERVER address how to DECOUPLE

SENDERS and RECEIVERS

LIYANA ARACHCHIGE RANIL

viii. TWO important aspects of COMMAND pattern,

INTERFACE SEPARATION (invoker is isolated from

receiver) , TIME SEPARATION (stores a ready to go

processing request that is to be started LATER)

ix.

x.

LIYANA ARACHCHIGE RANIL

xi.

c. Interpreter

i. Given a LANGUAGE define a REPRESENTATION for its

GRAMMER along with an INTERPRETER that uses the

representation to INTERPRET sentences in the

LANGUAGE

ii. MAP a DOMAIN -> (to a) -> LANGUAGE , the

LANGUAGE ->(to a) -> GRAMMER and GRAMMER ->

(to a) -> HIERACHYCAL OBJECT ORIENTED DESING

iii. A class of problems occurs REPEATEDLY in a WELL-

DEFINED and WELL-UNDERSTOOD domain. If the

DOMAIN were characterized with a LANGUAGE , then

the PROBLEM could be easily SOLVED with an

INTERPRETATION ENGINE

LIYANA ARACHCHIGE RANIL

iv. Each RULE in the GRAMMER is either a COMPOSITE or

a TERMIANL

v. INTERPRETER RELIES on the RECURSIVE traversal of

the COMPOSITE PATTERN to INTERPRET the

SENTENCES it is asked to PROCESS

vi.

vii. Example situation is a MATEMATICAL EQUATION and

the input values

viii. The INTEPRETER patterns DEFINES a GRAMMERTICAL

representation for a LANGUAGE and an INTERPRETER

to INTERPRET the GRAMMER

ix.

LIYANA ARACHCHIGE RANIL

x.

LIYANA ARACHCHIGE RANIL

xi.

d. Iterator

i. Provides a way to access the elements of an

AGGREGATE object sequentially WITHOUT EXPOSING

its underlying REPRESENTATION

ii. C++ and JAVA that makes it possible to DECOUPLE

COLLECTIONS classes and ALGORITHMS

LIYANA ARACHCHIGE RANIL

iii. Promote to FULL OBJECT STATUS the traversal of a

COLLECTION

iv. Polymorphic traversal

v. Nee to ABSTRACT the TRAVERSAL of WILDLY

different DATA STRUCTURES so that ALGORITHMS

can be defined that are capable of INTERFACING with

each transparently

vi. An AGGREGATE object such as a LIST should give a

way to access its elements without EXPOSING its

internal structure. Also it is needed to traverse the

LIST in different ways. But you don’t BLOAT the list

interface with these traversal related operations

LIYANA ARACHCHIGE RANIL

LIYANA ARACHCHIGE RANIL

vii.

LIYANA ARACHCHIGE RANIL

viii.

e. Mediator

i. Define an object that ENCAPSULATE how a set of

objects INTERACT

ii. MEADIATOR promotes LOOSE COUPLING by keeping

objects from REFERRING each other EXPLICITLY and

it lets you vary their INTERACTION independently

iii. Design an INTERMEADIATORY to DECOUPLE many

PEERS

LIYANA ARACHCHIGE RANIL

iv. PROBLEM : Want to design REUSABLE components ,

but DEPENDENCIES between the potentially reusable

pieces demonstrate the SPAGHETTI CODE

v.

vi.

vii.

LIYANA ARACHCHIGE RANIL

viii. Colleagues or Peers are not coupled to each other ,

each TALK to MEADIATOR

ix.

x. Be careful not to create a CONTROLLER or GOD

object

LIYANA ARACHCHIGE RANIL

xi.

LIYANA ARACHCHIGE RANIL

xii.

LIYANA ARACHCHIGE RANIL

xiii.

LIYANA ARACHCHIGE RANIL

xiv.

f. Memento

i. Without VIOLATING encapsulation , CAPTURE and

EXTERNALIZE an object INTERNAL state so that

Objects internal state can be returned to this later

ii. PROMOTE undo or ROLL back to FULL object status

iii. PROBLEM : Need to restore an object back to its

previous state

iv. The client request MEMENTO object from the source

object when it needs to CHECKPOINT the source

objects state

v. The source object initializes the MEMENTO with a

characterization of its state

vi. The client is the CARE TAKER of the MEMENTO

LIYANA ARACHCHIGE RANIL

vii. But only the SOUCE object can store and retrieve

information from the MEMENTO

viii. ORIGINATOR – the object that knows how to SAVE

itself , CARETAKER – the object that knows why and

when the originator needs to save and restore itself ,

MEMENTO – The lock box that is written and read by

the ORIGINATOR and shepherded by the CARETAKER

ix.

LIYANA ARACHCHIGE RANIL

x.

LIYANA ARACHCHIGE RANIL

xi.

g. Observer

i. Define a ONE-to-MANY dependency between objects

so that when one object changes state , all its

dependants are notified and updated automatically

ii. The VIEW part of the MVC

iii. PROBLEM : A large MONOLITIC design does not

SCALE well as new GRAPHING or MONITORING

requirements are levied

iv. Observers REGISTER themselves with the SUBJECT

v. The SUBJECT broadcast EVENTS to ALL REGISTRED

Observers

LIYANA ARACHCHIGE RANIL

vi. The SUBJECT may PUSH information at the

OBSERVER or , the OBSERVES may PULL the

information they need from the SUBJECT

vii.

viii.

LIYANA ARACHCHIGE RANIL

ix.

LIYANA ARACHCHIGE RANIL

x.

LIYANA ARACHCHIGE RANIL

xi.

LIYANA ARACHCHIGE RANIL

h. State

i. Allow an Object to alter its BEHAVIOR when its

INTERNAL state changes. The object will appear to

change its class

ii. A monolithic objects BEHAVIOUR is a FUNCTION of its

state , and it must change its behavior at RUNTIME

depending on the STATE

iii. Define a CONTEXT class to present a SINGLE

interface to the OUTSIDE world

iv. Define a STATE abstract base class

v. Represents the DIFFERENT state of the state

machine as DERIVED classes of the State base class

vi. Define state-specific behavior in the appropriate

State derived class

vii. Maintain pointer to the current state in the context

class

viii. To change the state of the MACHINE change the

CURRENT STATE POINTER

ix. The state pattern DOES not define WHERE the state

TRANSITION will be DEFINED. There are two choices ,

The CONTEXT object or each individual STATE

derived class

LIYANA ARACHCHIGE RANIL

x.

xi. Example of state is VENDING machine. Vending

machine has states based on the INVENTORY ,

amount of CURRENCY deposited , etc

xii.

LIYANA ARACHCHIGE RANIL

xiii. The STRUCTURE of STATE and BRIDGE are identical.

The two patterns use the same structure to solve

different problems

xiv.

LIYANA ARACHCHIGE RANIL

xv.

LIYANA ARACHCHIGE RANIL

xvi.

i. Strategy

i. Define a FAMILY of ALGORITHMS, encapsulate each

one and make them INTERCHANGEABLE. Strategy

lets the algorithm vary independently from the

clients that use it

ii. CAPTURE the ABSTRACTION in an INTERFACE , bury

IMLEMENTATAION details in derived classes

iii. OPEN for EXTENSION closed for MODIFICATION

LIYANA ARACHCHIGE RANIL

iv.

v.

LIYANA ARACHCHIGE RANIL

vi.

vii. Strategy lets you change the GUTS of an object while

DECORATOR lets you change the SKIN

LIYANA ARACHCHIGE RANIL

viii.

ix.

LIYANA ARACHCHIGE RANIL

x.

j. Template Method

i. Define the SKELETON of an ALGORITHM in an

OPERATION, deferring some steps to CLIENT

subclasses. TEMPLATE METHOD lets SUBCLASSES

REDEDFINE certain steps of an ALGORITHM without

changing the ALGORITHMS structure

ii. Base class DECLAIRS algorithm “PLACEHOLDERS”

and derived classes IMPLEMENT the PLACEHOLDERS

iii. TEMPLATE method is used PROMINANTLY in

FRAMEWORKS

LIYANA ARACHCHIGE RANIL

iv.

v. TEMPLATE method uses INHERITANCE to vary PART

of an ALGORITHM. STRATEGY uses DELEGATION to

vary the ENTIRE ALGORITHM

vi. FACTORY method is a SPECIALIZATION of TEMPLATE

method

vii.

LIYANA ARACHCHIGE RANIL

viii.

ix.

k. Visitor

i. Represents an OPERATION to be performed on the

elements of an object structure

ii. The approach ENCOURAGES designing LIGHTWEIGHT

element classes. Because processing functionality is

removed from there list of RESPONSIBILITIES. New

FUNCTIONALITY can easily be added to the ORIGINAL

LIYANA ARACHCHIGE RANIL

inheritance HIERACHY by crating a new VISITOR

subclass

iii. VISITOR lest you define a new operation without

changing the classes of the elements on which it

operates

iv. The classis technique of RECOVERING lost type

information

v. PROBLEM : Many distinct and unrelated operations

need to be performed on node objects in a

heterogeneous aggregate structure

vi. You want to AVOID polluting the node classes with

these operations.

vii. Visitor is not good for situations where VISITED

classes are not stable. Every time a new COMPOSITE

hierarchy derived class is added , every VISITOR

derived class must be amended

LIYANA ARACHCHIGE RANIL

viii.

ix.

LIYANA ARACHCHIGE RANIL

x.

xi.

LIYANA ARACHCHIGE RANIL

xii.

LIYANA ARACHCHIGE RANIL

xiii.

