LIYANA ARACHCHIGE RANIL

SHORT NOTES / DESIGN PATTERNS

1. There are two major types of design patterns
a. CORE J2EE PATTERN
b. GANG OF FOUR PATTERN (FOG Pattern)

CORE J2EE PATTERNS
1. A Pattern is an idea that has been useful in one PRACTICLE
CONTEXT and will probably be useful in others
2. PRESENTAION TIER DESIGN CONSIDERATION
a. SESSION MANAGEMENT
i. Session state can be saved on the client / SESSION
STATE ON THE CLIENT
Saving session state on the client involves
SERIALIZING and EMBEDDING the session state
within the VIEW MARKUP HTML page that is returned
to the client
1. Relatively easy to implement
2. works well when saving minimal data
3. eliminate the problem of replicating state
across severs where load balancing is done
4. There are two strategies that can be used to
save state on the client , HTML HIDDEN fields
and HTTP COOKIES
5. HTML HIDDEN FIELDS are only good for small
amount of data , if the data is larger then
performance is severely effected

LIYANA ARACHCHIGE RANIL

6. HTML HIDDED FIELDS can only save STRING
value , hence any object referenced in the
state would be STRINGIFIED

7. HTTP COOKIES are also only good for small
data sizes

8. For HTTP COOKIES there are SIZE LIMITATIONS

9. Another strategy is EMBEDDING the state to
the URL

10. When saving session state on the
CLIENT, SECURITY issues are introduced. Hence
it is required to ENCRYPT the state

ii. SESSION STATE ON THE PRESENTATION LAYER

1. When session state is maintained on the
SERVER , it is retrieved using a SESSION ID

2. Itis clearly preferable to save the SESSION
state of an application which contains lot of
SESSION state related data on the SERVER

iii. SESSION STATE ON THE BUSINESS TIRE / RESOURCE
TIER

1. EJB can be used to HOLD session state in the
BUSINESS TIER

2. RELATIONAL DB can be used at the RESOURCE
TIER

b. CONTROLLING CLIENT ACCESS
i. Guard a view or portion of view from direct access by
client

1. For this you can EMBED a GUARD within the
view itself. It can be done in such a way that
All-Or-Nothing , or only portion of the view

LIYANA ARACHCHIGE RANIL

2. GUARD by CONFIGURATION. For this you can
leverage the security built in to web container
ii. Controlling the flow of the USER through the
application (Stopping DUPLICATE form submissions)
1. Synchronizer Token (Déja vu)
iii. VALIDATION
1. Validation on the CLIENT
a. Client side validation is always a
COMPLIMENT to server side validation
2. Validation on the SERVER

C.
3. PRESENTATION TIER BAD PRACTICES
a. Control Code in Multiple VIEWS
i. Consolidate the control code INTRODUCING
CONTROLLERS and associated HELPERS - Front
Controller / View Helper
b. Exposing presentation tier data structures (HTTP SERVLET
REQUEST) to Business Tier
i. Copy Presentation tier data structure’s data to
another object such as CONTEXT OBJECT and use this
to pass value between layers or pass those values as
parameters
c. Exposing Presentation tier data structures to Domain
Objects
i. Domain Object are reusable objects and Presentation
tier data structures MUST not be used in side them
which makes tight coupling between those two
d. Allowing Duplication Form Submissions

i. Introduce Synchronization Token

LIYANA ARACHCHIGE RANIL

e. Exposing Sensitive Resources to Direct Client Access
f. Creating FAT controllers
i. If TOO MUCH code is added to the controller it
becomes cumbersome to test , debug and controller
is heavy weight
ii. Controller is the INITIAL CONTACT point as well as it
should be a DELEGATE POINT
iii. Use COMMAND OBJECT to encapsulate different
control logic, so that CONTRLLER will be light weight
and individual COMMAND objects can be TESTED
relatively in ISOLATION
g. Using HELPERS as SCRIPLETS
i. HELPERS must only expose HIGHER LEVEL
ABSTRACTIONS

4. BUSINESS TIER DESIGN CONSIDERATION
a. USING SESSION BEANS
i. Stateless versus Statefull
1. In case of stateless , the state has to be passed
from the client or retrieved from the
persistence store to stateless session bean
ii. Storing State on the Business Tier
1. If the architecture is solely based on Web-
based application then maintaining state on
the WEB TIER makes sense
2. If the APPLICATION supports different client
including web clients , java applications , other
enterprise beans etc then conversational state
can be maintained in the EJB layer using
STATEFULL beans

LIYANA ARACHCHIGE RANIL

b. USING ENTITY BEANS
i. Entity beans are best suited as CORSE GRAINED
business objects
ii. Entity bean PRIMARY KEYS (simple key or Composite
key)
iii. Business Logic in Entity Beans
1. Entity bean should contain business logic that
is self contained to manage ITS OWN DATA and
DEPENDENT OBJECTS data. It is required to
take out the business logic that requires Entity
Bean to Entity Bean interaction and put that in
a SESSION BEAN. Composite Entity and Session
Facade come in to play in this case
iv. Caching Enterprise Bean remote reference and
Handles
5. BUSINESS AND INTEGRATION TIER BAD PRACTICES
a. Mapping the Object model directly to the Entity Bean
Model
i. Results in LARGE number of FINE-GRAINED entity
beans
ii. The container and NETWORK OVERHEAD is increased
iii. ldentify the PARENT DEPENDENT OBJECT
RELATIONSHIPS in the OBJECT MODEL and DESIGN
them as COARSE-GRAINED ENTITY BEANS
iv. This results in FEWER ENTITY BEANS
b. Mapping the relational model directly to the Entity Bean
Model
i. Itis a BAD practice to design each row in a table as
an ENTITY BEAN
c. Mapping each use case to a SESSION BEAN

LIYANA ARACHCHIGE RANIL

i. This creates FINE GRAINED controller responsible to

service a ONE TYPE OF INTERRACTION

ii. This would SIGNIFICANTLY increase the COMPLEXITY
of the application

iii. Apply SESSION FACADE pattern to AGGREGATE a
GROUP of the related interactions in to a SINGLE
SESSION BEAN

iv. This results in a FEWER session beans and leverage
the advantage of applying SESSION FACADE

d. Exposing all enterprise bean Attributes via GETTER/SETTER
methods

i. This forces CLIENT to invoke NUMEROUS FINE-
GRAINED REMOTE invocations and creates the
potential of introducing a significant NETWORK
OVERHEAD or CHATTINESS

ii. Use a VALUE OBJECT/TRANSFER OBJECT to transfer
AGGREGATE DATA to and from the client instead of
EXPOSING GETTERS and SETTERS

e. Embedding SERVICE LOOKUPS in CLIENT CODE

i. Any changes to the LOOKUP code effects all the

clients , hence very bad

ii. Clients are exposed to the complexity of the
underline implementations and introduce
dependency on the look up code

iii. Encapsulate implementation details of the look up
mechanism using a SERVICE LOCATOR. Encapsulate
the implementation details of business tier
components such as Session, Entity Beans in a
BUSINESS DELEGATE.

LIYANA ARACHCHIGE RANIL

iv.

This simplifies the client code since there is no longer
dependency on Enterprise Beans and Services
Business Delegate CAN intern use the SERVICE
LOCATOR

f. Using Entity Beans as READ ONLY objects

Vi.

Using and Entity Bean as a READ ONLY object simply
WASTES EXPENSIVE resources and results in
UNNECESSARY UPDATE transactions to the
PERSISTANCE store

. This is due to the invocation of ejbStore() methods by

the container during entity beans life cycle.
Container does not have a way to know whether the
data was changed during the invocation of the
method , hence it assumes data is changed and
invokes ejbStore() on the bean

Encapsulate all access to Data Source using DAO
pattern. This provides a CENTRALISED layer of data
access code and also SIMPLIFIES ENTITY BEAN CODE
Implements access to READ ONLY functionality using
a SESSION BEAN typically as a SESSION FACADE
which uses DAO

Use VALUE LIST HANDLER to obtain LIST OF
TRANSFER OBJECTS

Use TRANSFER OBJECT ASSEMBLER to obtain
COMPLEX DATA MODEL from business tier

g. Using ENITY BEANS as FINE GRAINED OBJECTS

Use composite entity to come up with a COARSE
GRAINED object

h. Storing ENTIRE ENTITY BEAN dependent object graph

LIYANA ARACHCHIGE RANIL

i. When complex tree structure of dependent objects
are used in an entity bean , performance can
degrade rapidly when loading an storing an entire
tree of dependent objects

ii. Identify the dependent objects that have changed
and store only those (Composite Entity and Store
Optimization Strategy[Dirty marker])

iii. Implement LAZY LOADING strategy
i. Exposing EJB related exceptions to NON-EJB clients

i. Decouple the CLIENT from the Business tier and hide
the business tier implementation details from the
client using BUSINESS DELEGATE

ii.

j- Using Entity Bean Finder methods to return a LARGE
RESULT SET

i. Using an EJB FINDER method would result in a LARGE
collection of REMOTE REFERENCES

ii. Consequently the client would have to invoke
methods on these remote references to get data.
This will become very expensive network call

iii. Implements Queries using SESSION BEANS and DAOs
to obtain a list of TRANSFER OBJECTS. Use DAO
patterns to SEARCH instead of EJB finder methods.
User VALUE LIST HANDLER to have list of TRANSFER
OBJECTS

k. Clients aggregate DATA from business components

i. The application clients typically need the DATA
model for the application from the BUSINESS TIER.
Since the model is implemented as an Entity ,

Session , and arbitrary Objects in the business tier

LIYANA ARACHCHIGE RANIL

1.

1v.

the client MUST locate , interact with and extract the
necessary data from various business components to
construct the data model

These CLIENT ACTIONS introduce NETWORK
OVERHEAD due to multiple invocations

Client would become TIGHTLY coupled with the
business services as well

Decouple the CLIENT from model CONSTRUCTION
and introduce TRANSFER OBJECT ASSEMBLER

[. Using EJB for LONG LIVED transactions

iv.

Enterprise beans are suitable for SYNCRHONOUS
processing , EJB do well if the method implemented
in a bean produces an OUTCOME within a predictable
and ACCEPTABLE time period

If EJB method takes significant amount of time to
process a client requests or it if BLOCKS while
processing , this also BLOCKS CONTAINER
RESOURCES

Implement ASYNCHRONOUS processing service using
a MESSAGE-ORIENTED middleware with a JMS API to
facilitate long lived transactions

Use SERVICE ACTIVATOR hence

m. Stateless Session Bean RECONSTRUCT conversational state

for each invocation

Analyze the INTERACTION model before choosing
between STATELESS or STATEFUL

PRESENTATION TIRE REFACTORING

LIYANA ARACHCHIGE RANIL

1. INTRODUCE A CONTROLLER - Control LOGIC is scattered
throughout the application , typically DUPLICATED in MULTIPLE
JSP views

a. Extract control logic to ONE or MORE controller
classes that serve as the INITIAL contact point for
handling client requests

2. INTRODUCE SYNCHRONIZER TOKEN - Clients make
DUPLICATE resource requests.

3. LOCALIZE DISPARATE LOGIC - Business logic and
presentation formatting is intermingled within JSP.

a. Extract business logic to HELPER classes so that JSP
and CONTROLLERS can reuse (Business Logic is the one
which is sent to HELPER CLASSES)

4. HIDE PRESENTATION TIER SPECIFIC FROM BUSINESS TIER
- Request handling or protocol related data structures are
exposed from the presentation tier to business tier

a. Pass values between layers using more GENERIC
data structures

5. REMOVE CONVERSIONS FROM VIEW - Portions of MODEL are
converted to DISPLAY within a VIEW component

a. Extract all conversion code from view and
encapsulate it in one or more VIEW HELPERS

6. HIDE RESOURCES FROM A CLIENT - Certain resources such
as JSP views are directly accessible by clients though access
should be restricted

a. Hide certain resources via CONTAINER
CONFIGURATION or using a controller component

BUSINESS AND INTEGRATION TIER REFACTORING

LIYANA ARACHCHIGE RANIL

1.

WRAP ENTITIES WITH SESSION - Entity beans in BUSINESS
tier are EXPOSED To clients in another tier
a. Use a SESSION FACADE to encapsulate ENTITY
BEAN
INTRODUCE BUSINESS DELEGATE - Session BEANS in the
BUSINESS tier are exposed to clients in another tier
a. Use BUSINESS DELEGATE to decouple the TIERS
and HIDE the implementation details
MERGE SESSION BEANS - There is one to one mapping
between SESSION beans and ENITITY beans
a. Maps business services to SESSION BEANS ,
eliminate or combine SESSION BEANS that act
solely as ENTITY BEAN PROXIES into SESSION
BEANS that represents COARSE GRAINED
business services
REDUCE INTER ENTITY BEAN COMMUNICATION - Inter
entity bean relationship introduces OVERHEAD in the MODEL
a. Reduce the INTER ENTITY BEAN communication
using COARSE GRAINED entity beans (COMPOSITE
ENTITY)
MOVE BUSINESS LOGIC TO SESSION - Inter ENTITY bean
relationships introduce OVERHEAD in the MODEL
a. Encapsulate WORKFLOW related to INTER ENTITY
BEAN relationships in a SESSION BEAN (SESSION
FACADE)

GENERAL REFACTORING

1. SEPARATE DATA ACCESS CODE - Data Access Code is
embedded within a class that has other RESPONSIBILITIES

LIYANA ARACHCHIGE RANIL

a. Extracts the DATA Access code to a new class

and move the new class LOGICALLY and / or
PHYSICALLY closer to the DATA SOURCE
2. USE A CONNECTION POOL - data base connections are

not shared , instead clients manage their own connections

for making data base invocations

a. Use a Connection Pool to pre initialize multiple

connections improving SCALABILITY and

PERFORMANCE

s/n

o)

If you are looking for this

Find it Here

PRESENTATION TIER PATTERNS

1 Preprocessing or Post Processing of Intercepting Filter
REQUESTS

2 Adding Logging, Debugging or some Front Controller,
other behavior to be completed FOR Intercepting Filter
EACH REQUEST

3 Centralizing CONTROL for REQUEST Front Controller
HANDLING Intercepting Filter ,

4 Creating a generic COMMAND Front Controller,
interface or CONTEXT object for Application Controller,
reducing coupling between control Context Object
component and helper components

5 Whether to implement a Controller as | Front Controller
a Servlet or JSP

6 Creating a VIEW from NUMEROUS SUB | Composite View
views

7 Whether to implement the VIEW as a View Helper
SERVLET of JSP

8 How to PARTITION the view and Model | View Helper

9 Where to encapsulate PRESENTATION | View Helper

related data formatting LOGIC

LIYANA ARACHCHIGE RANIL

10 | Combining Multiple Presentation Intercepting Filter,
patterns Dispatcher View
11 | Where to encapsulate VIEW Service to Worker,

MANAGEMENT and NAVIGATION LOGIC | Dispatcher View
which involves CHOOSING and VIEW
and DISPATCHING it

12 | Where to store SESSION state Session state in Web Tier
, Session State on
Business Tier , Session

state on Client Tier

13 | Controlling client access to a certain Controlling client

view or a sub-view access , hide resource
from client
14 | Controlling the FLOW of request in to Synchronizer Token ,
the application duplicate form
submission

15 | Controlling duplicate form submission | Introduce Synchronizer
token , Duplicate form

submission

16 | Reducing coupling between Business delegate
PRESENTATION and BUSINESS Tier

17 | Partition data access code DAO

BUSINESS TIER PATTERNS

1 Minimize coupling between Business Delegate
presentation and business tier

2 Cache business service for clients Business Delegate

3 Hide implementation details of Business Delegate ,
Business Service lookup , creation and | Service Locator
access

4 Isolate VENDOR and TECHNOLOGY Service Locator

dependencies for service lookup

5 Provide uniform method for business Service Locator

service lookup and creation

6 Hide the complexity and Service Locator

LIYANA ARACHCHIGE RANIL

dependencies of EJB beans and JMS
component look up

7 Transfer Data between business Transfer Object
object and client access tier

8 Provide SIMPLER uniform INTERFACE Business Delegate ,
to remote CLIENTS Session Facade ,

Application Service

9 Reduce Remote method invocations Session Facade
by providing COARSE-GRAINED
method access to business tier
components

10 | Manage the relationships between Session Facade
Enterprise bean components and hide
the COMPEXITY of interactions

11 | Protect the Business Tier components | Session Facade,
from DIRECTLY EXPOSING to CLIENTS | Application Service

12 | Provide Uniform boundary access to Session Facade ,
business tier components Application Service

13 | Implement complex conceptual Business Objects
domain model using objects

14 | Identify COARSE-GRAINED objects and | Business Object ,
DEPENDENT objects for Business Composite Entity
Objects and Entity Bean design

15 | Design for COARSE-GRAINED entity Composite entity
beans

16 | Reduce or eliminate the entity bean Composite Entity
clients’ dependency on the DATABASE
schema

17 | Reduce or eliminate entity bean to Composite Entity
entity bean remote relationships

18 | Reduce number of Entity beans and Composite Entity
improve manageability

19 | Obtain the application data model for | Transfer Object

the application from various Business

Assembler

LIYANA ARACHCHIGE RANIL

Components

20 | On the fly construction of the Transfer Object
application data model Assembler

21 | Hide the complexity of the data model | Transfer Object
CONSTRUCTION from the client Assembler

22 | Provide business tier query and results | Value List Handler
list processing facility

23 | Minimize the overhead of using EJB Value List Handler
finder methods

24 | Provide QUERY RESULTS CACHING for | Value List Handler

the CLIENT on the SERVER side with
FORWARD and BACKWARD
navigability

INTEGRATION TIER

1 Minimize COUPLING between Business | Data Access Object
and resource tier

2 Centralize access to Resource Tier Data Access Object

3 Minimize Complexity of Resource Data Access Object
access from Business tier components

4 Provide Asynchronous Processing for Service Activator
enterprise applications

5 Send and Asynchronous request to a | Service Activator
Business Service

6 Asynchronously process a request as a | Service Activator
set of parallel tasks

7 Transparently Persist and Object Domain Store
Model

8 Implement a CUSTOM persistence Domain Store
FRAMEWORK

9 Expose a WEB SERVICE using XML and | Web Service Broker
standard Internet Protocol

10 | Aggregate and Broker existing Web Service Broker

services as WEB SERVICES

LIYANA ARACHCHIGE RANIL

Core J2EE Patterns, 2nd Edition

Apply zero or more

LEGEND:

- Presentation Tier
- Business Toer
- Integration Tier

Intercepling Filter

Detegate Contral
| eNEw»

Centralize Control

Front Controller

Composite View ate Create
Dispatch to Dispatch to Delegate processing l ‘
targel View Viaw to Helpers
Context Object
Compose View View Helper
from Sub-Views

Dispatch
to View

Lightweight Control Processing

Dispatch

to View Froni Controller CEEEEE 4
Access Gomral Processing
Business ;' Service To Worker

. - SR Front Controlter

Dispaicher ¥iew
Service
Access Business Service Access
Business
Invoke Busi P ' l Service
___LI_s_e;___, SLDE.’M Service Localor
Delegate Gonnectand Invoks
Businass
Procassing
Coordinate Invoke Session Facade Transter Object
Business Business
Processing Processing Facade Send
Encapsulate and coordinate for Data Assambles

Model

Business Object

Processing Implement Sand
Entity Beans Data

Transfer Object Assembler

Relrieve H
Business List luses

L Asynchronous - ¥ ‘II
Processing Domain Store Business Dbject
Detegate Uses for

uses
]
Asynchronous - Bean-managed
Processing E Persistence Send Data
- ; +
Web Service Broker [N I P uses_______ !

(c) 2003 corej2eepatterns.com. All Rights Reserved.

1. PRESENTATION TIER PATTERN
a. Intercepting Filter

LIYANA ARACHCHIGE RANIL

1.

iv.

You want to INTERCEPT and MANIPULATE request
and a response BEFORE and AFTER the request is
PROCESSED

Checking the session validity , checking request
path violations , checking the BROWSER type ,
checking the ENCODING that the client is using ,
checking if the request is ENCRYPTED or
COMPRESSED etc could be done using an
INTERCEPTING FILTER

Sharing INFORMATION between filters CAN BE
INEFFICIENT

creates

Client FilterManager fiterChain | . qkes Target

invokes

T 1

: I{nrdered}
|

|

Filter

b. Front Controller

Centralized access point for PRESENTATION tier
REQUEST handling

Without centralized place the CONTROL code that is
common across MULTIPLE request would have to be
DUPLICATED

Avoid duplicate control logic , common logic for
multiple request , separate system processing logic

LIYANA ARACHCHIGE RANIL

from the View , centralize controlled access points to
the system

iv. Use FRONT CONTROLLER as the INITIAL point of
contact

v. A controller TYPICALLY users a APPLICATION
CONTROLLER for ACTION and VIEW management

vi. Contains PROTOCOLE SPECIFIC code

Vii.

dispatches View
=

Client FrontController delegates ApplicationController

sends request

I‘[\ L
invokes =

==Semnlet== =2]5P==
ServietFront JSPFront

Command

c. Context Object

i. Avoid PROTOCOL specific SYSTEM information
OUTSIDE of its RELEVANT context

ii. Ex; HTTPREQUEST must not be passed between
layers , instead HTTPREQUEST values must be
transferred to a CONTEXT object and that object
must be used

iii. Application would not be coupled to a SPECIFIC
PROTOCOL

iv. Context Objects MAIN goal is to SHARE SYSTEMS
INFORMATION IN A PROTOCOL INDEPENDENT WAY ,
Transfer Objects MAIN goal is to REDUCE NETWORK
COMMUNICATION , IMPROVING PERFORMACE

LIYANA ARACHCHIGE RANIL

Uses

Chent uses | ContextFactory | .ooppc | ContextObject

Uses

Protocoffterface

V.
d. Application Controller
i. Centralize and Modularize ACTION and VIEW
management
ii. Resolving the incoming request to an ACTION is
ACTION MANAGEMENT
iii. Locating an APPROPRIATE VIEW is VIEW
MANAGEMENT
iv. Reuse action an view management , improve request
handling EXTENSIBILITY , improve code MODULARITY
and MAINTAINABILITY

LIYANA ARACHCHIGE RANIL

V.

ApplicationController

Chient delegates
FromtController | | InterceptingFilter

e. View Helper

resolves

I
I
I
Mapper A

Uses

Map

invokes

Target

lrpruvides i

View Command

i. Separate a view from its PROCESSING LOGIC

ii. Want to use TEMPLATE based views such as JSP,
want to AVOID embedding program logic in the
VIEW , Want to SEPARATE programming logic from
the view to facilitate DIVISION of LABOR between
SOFTWARE DEVELOPERS and WEB PAGE DESIGNERS

PresemtationModel

Client View Helper
dispatches uges P __adipE_
1 0.
I I |
FrontController | | ApplicationController JavaBean CustomTag TagFile

f. Composite View

LIYANA ARACHCHIGE RANIL

Build a view from MODULAR , ATOMIC component
parts that are COMBINED to create a COMPOSITE
WHOLE, while managing the content and the LAYOUT
independently

mahnages = 1

Chent dispatches view T Tooo—= YiewManager
1.* =
ZP\ contains NEEE
[1 1.7
Simpleview Compositeview Template
A I
L _ _defineslayout |

g. Service to Worker

Perform CORE request HANDLING and INVOKE
BUSINESS LOGIC before control is passes to the VIEW
Business and DATA service is invoked BEFORE the
view is rendered

How sophisticated is the Control Logic , How dynamic
is the RESPONSE content , How sophisticated is the
BUSINESS LOGIC and MODEL

iv. Want specific BUSINESS logic executed to SERVICE a

request in order to RETRIEVE content that will be
used to GENERATE a DYNAMIC response

Have View selections which may depend on the
response from BUSINESS SERVICE

LIYANA ARACHCHIGE RANIL

Vi.

delegates BusinessHelper Accesees BusinessSenice
1.8 7
Client <=Servets= B
_se_ndi riqies_t FromtController |
| provides
|
W
ApplicationController PresentationModel
delegates
: dispatches ;i\adapts
by |

==]5P==
View

uses 0 | ViewHelper

h. Dispatcher View

Want a VIEW to handle a REQUEST and GENERATE a
RESPONSE , while managing LIMITED amount of
BUSINESS PROCESSING

Have static views , have views GENERATED from an
EXISTING MODEL , have views which are
INDEPENDENT of any BUSIENSS SERVICE RESPONSE ,
have LIMITED business processing

LIYANA ARACHCHIGE RANIL

Client ==Semlat== BusinessHelper accesses BusinessService
sends request (FrontController| ———————————F+———= =
0. I
ravides
delegates delegates \:fp
ApplicationController | ;s natepes “‘:_SF'” PresentationModel
= ew
M
|
uses I
0. :
ViewHelper
r adapts _!

2. BUSINESS TIER PATTERN

a. Business Delegate

Vi.

Want to hide clients from the COMPLEXITY of remote

communication with business service components

. Want to access business tier components from your

presentation tier components clients , such as
DEVICES , WEB SERVICES and RICH CLIENTS

Want to AVOID un necessary invocation of REMOTE
SERVICES

. Want to translate network exceptions into

APPLICATION or USER EXCEPTIONS

Want to hide the details of SERVICE CREATION ,
RECONFIGURATION and INVOCATION RETRIES from
the client

Reduced coupling , improved maintainability ,
translation of business exceptions , improves

availability , expose a simpler uniform interface to

LIYANA ARACHCHIGE RANIL

the business tier , improved performance ,
introduced additional layer , hides remoteness

Vii.

Chient accesses '_=~=F'OJO=~=~ accesses BusinessService
BusinessDelegate

1 1.* 1 '____%:;

|

= |
. ||nnksup

|

|

1 EJBService || JMSService

==3ingleton== | _ __ __ __ J

Senvicelocator

b. Service Locator
i. Want to transparently locate business components
and services in a uniform manner
ii. Want to use JNDI lookup and business components,
JMS components , data sources
iii. Centralize and reuse the implementation of lookup in
J2EE clients
iv. Encapsulate vendor dependencies for registry
implementation
v. Avoid performance overhead related to INITIAL
context and Service Lookups
vi. Re-establish a CONNECTION to previously accessed
enterprise beans instances using HANDLE
vii. If you need to locate a WEB SERVICE published in
UDDI , Web Service Locator can be used

LIYANA ARACHCHIGE RANIL

RegistryService
creates /|\
e 7 refars
1 \‘6', 1
Client Lses ==8ingleton== InitialContext
SenvicelLocator | wsss g
1.% 1 9
T T
| : maintaing |
| | 1 |
| | |
| I Cache |
| | |
| obtainsfaccesses | | resolves
	1
	looksup
	caches
Vo .	
Target	
- _
VIII.

c. Session facade
i. To expose BUSINESS COMPONENTS and SERVICES to
REMOTE CLIENTS
ii. Address two issues, CONTROLLING CLIENT ACCESS to
Business Objects , and LIMITING NETWORK TRAFFIC
between remote clients and FINE-GRAINED business
components and services

Chient ALCESSES <<Ses:5|unE.JEI>> acreESSES BusinessComponent
SessionFacade

1.7 1.7 1.7 1.7

j

ApplicationService | | BusinessObject | | DataAccessOhbject

d. Application Service
i. Want to CENTRALIZE business logic ACROSS several

business tier components and services

LIYANA ARACHCHIGE RANIL

ii. Want to MINIMISE business logic in SESSION
FACADE(S)

iii. If business logic is embedded in Session Facades ,
the reusability of that logic is effected , hence use
APPLICATION SERVICE

iv. When you see BUSINESS LOGIC is becoming
duplicated in SESSION FACADE , it is good to
introduce APPLICATION SERVICE

invakes -] BusinessOhject

et TR e
I
|
Cliont RREEEEE ApplicationController invokes | DataAccessObject
1.% T e
Q |
| ol Service
[| L Mo,

ServiceFacade ==POJ0==
—— Helper

e. Business Object
i. Have a CONCEPTUAL domain model with BUSINESS
LOGIC and RELATIONSHIP
ii. Have a conceptual model with sophisticated business

logic , validation and business rules

LIYANA ARACHCHIGE RANIL

Client accesses

==BusinessOhject==
ParentBO

containg

7

ServiceFacade | | ApplicationService | | =<FQJ0==

Helper

o

L

DataStore |- _ _ !

persists in

f. Composite Entity

==BusinessOhject== 0.*
DependentBO -

t |

T
|
: containg

persists in

Want to use ENTITY beans to implement the
CONCEPTUAL domain model
Want to AVOID drawbacks of remote entity beans ,

such as network overhead , inter-entity bean

relationships

Want to implement PARENT-CHILD relationship
efficiently when implementing BUSINESS OBJECTS as

ENTITY BEANS

clients

. Want to encapsulate PHYSICAL DB design from the

LIYANA ARACHCHIGE RANIL

V.

Client accesses

1.7 1.7

— L

==LocalEntityEJB==
CompositeEntity

containg

==5essionEJB=> | | ApplicationService

SessionFacade

g. Transfer Object

TIER

and interface , Transfer more data in fewer calls

0.*

==BuginessOhject==
DependemBO

g

==L ocalEntityEJB == ==POJO== 7s

0.7 | DependentEntityBO | | DependentPOJOBO |-~
1 1

contains contains

Want to TRANSFER multiple data elements over a

Reduces Network traffic , Simplifies remote object

,reduce code duplication, introduces stale transfer

object

LIYANA ARACHCHIGE RANIL

drCESSes

createsiuses

Component

1.% 1.

*

7

=<PQJO>=

______ TransferOhject
createsiuses = !

==PresentationTier==
PresComponent

==HusihessTier==
BizComponent

==|ntegrationTier=:=
IntComponent

h. Transfer Object Assembler

i. Want to obtain an application model that aggregates

transfer objects from several business components

ii. Transfer object Assembler helps BUILD an application
model as a COMPOSITE TRANSFER OBJECT

iii. Transfer Object Assembler AGGREGATES multiple
TRANSFER OBJECTS from various business

components and services and return to the client

LIYANA ARACHCHIGE RANIL

iv.

Chent

uses

dCCesses

! _u:uliaﬂsiuiei = ==TransferOhject==

i. Value List Handler
Have a REMOTE clients that wants to ITERATE over a
LARGE RESULT SET
Want to AVOID overhead of using EJB FINDER

methods , want to implement READ-ONLY use case

assemhbles

v e >

ApplicationModel | 0.7

contains

BusinessOhject

= DataAccessOhbject

SemnviceFacade

Senice

that does not need transactions , Wants to provide
CLIENTS with an EFFICIENT search and iterate

mechanism over a large result set , wants to

maintain the search results on the server side

LIYANA ARACHCHIGE RANIL

Use VALUE LIST HANDLER to SEARCH , CACHE results
and allow the clients to TRAVERS and select ITEMS

from the results

[terator
Valuelisthterator [<—

Cliert i
uses | ValueListHandler manages

iterates
1
ValueList [_ __|

I
I
0. !
| createsireturns
|

Value

dccesses

* 1
1 1.)
|
|
I

creates

DataAccessOhbject

3. INTEGRATION TIER PATTERN
a. Data Access Object
Want to ENCAPSULATE data access and manipulation

1.

in a separate layer

Want to decouple the PERSISTENT STORAGE
implementation from the rest of the application
Want to provide UNIFORM data access API for a
persistence mechanism to various types of data
sources , such as RDBMS , LDAP , OODB , XML

repositories , FLAT files etc

LIYANA ARACHCHIGE RANIL

iv. Want to organize data access logic and encapsulate
proprietary features to facilitate maintainability and
portability

Client uses DatafccessObject | ..pcces DataSource

* 1

+ereatevoid
+read:Object

1 uses

' T

' |

I +updatevoid |

| +deleteroid |

| creates fuses | creates
: : creates ’ :

| W i
———— —— = =<Transferhject== ResultSet

Data

b. Service Activator
i. Want to INVOKE services ASYNCHRONOUSLY

ii. Want to integrate PUBLISH/SUBSCRIBER and POINT
to POINT messaging to enable ASYNCRONOUS
processing services

iii. ServiceActivator can be implemented as a POJO
service activator or a Message Driven Bean

iv. In case of POJO service activator , many methods
need to be written while MBD , only onMessage
method needs to be written

v. Want to perform BUSINESS TASKS that is logically
COMPOSED of SEVERAL BUSINESS TASKS

LIYANA ARACHCHIGE RANIL

VI.
interface interface
Javacjms.\fessage Javaxjms. Messagel istener|
| |
1 1
Client Request i ServiceActivator | | =<Target-»
— ieitei; éf C_e 'f S_ _ _ITDEES_} BusinessSenvice

==P0J0== ==EJB==
POJOService (| EJBService

c. Domain Store
i. Want to SEPARATE persistence FROM the OBJECT
MODEL
ii. Want to avoid putting persistence details in to the
Business Objects
iii. Do not want to use Entity Beans
iv. The application might be running in a WEB SERVER
v. Object model users INHERITANCE and COMPLEX
RELATIONSHIPS

LIYANA ARACHCHIGE RANIL

Jafieueaiualsisiad s1eh

==Factary=»
1 PersistenceManagerFactory

SessionFacade

ApplicationService

execute

}-

StateManager 1 getisetdata Persistahle
E manages state 1., qetsetdata 1
[
2 +isDirty(-boolean
n
=
c
PersistenceManager 2
T pre == L== BusinessObject
ransaction = i
uses 1 * | TRersistvoid 0.7 gl = PersistMap
“= +persistAllJvoid I 3
+deletedvoid @
+deletedll{void
+rcreateciuen:cuery =
0 o
i)
7 -
H ==0ifl==
LR * DataResource
i CRUD 1. StoreManager | ¢+ cRuD 1.+
Query
0.7

executed Ohject

d. Web Service Broker

ii.

1v.

Want to provide access to ONE or MODE services
using XML and WEB PROTOCOLS

Want to REUSE and EXPOSE existing services to
CLIENTS

Want to MONITOR an potentially LIMIT the usage of
EXPOSED services

Web service broker is a WEB SERVICE that serves as
a BROKER to ONE or MODE services. Those services
can be J2EE services , such as SESSION BEANS ,
APPLICATION SERVICES or LEGACY EIS SYSTEMS
SessionBean)JAXBroker , POJOJAXBroker , POJOBroker

are few realizations of web service brokers

LIYANA ARACHCHIGE RANIL

Vi.

==5atlate 2=iifel Services==

BusinessService

Clent sand reguest ., | EndpointProcessor 1.7, | WebServiceBroker arcasses 1%

a=F Q0= =< JBRIC=> == JAFRPC==
POJOBroker SessionBeanJAXBroker POJOJAXBroker

GANG OF FOUR (GOF) PATTERNS
1. CREATIONAL PATTERNS

a. Abstract Factory
i. Provides and INTERFACE for crating FAMILIES of

RELATED or DEPENDENT objects without specifying
their CONCREATE CLASSES

ii. A hierarchy that encapsulate : many possible
platforms and construction of suite of PRODUCTS

iii. The new operator considered harmful

LIYANA ARACHCHIGE RANIL

winterfaces
Classi AbstractProductOne
R
L él 1
/ L [ProductOnePlatformOne| [ProductOnePlatformTwo
«interfaces
AbstractPlatform
winterfaces
PlatformOne PlatformTwo AbstractProductTwo
—t+makeProductOmne()
| +makeProductTwaol) | |

-——

| ProduciTwoPlatformOne ProducTwoPlatfiormTwo

|

|

|

return new ProductonePlatformTwo(); |
|

|

|

return new ProductTwoPlatformTwo(); b‘

StampingEquipment —{cnnnt (parts list for Model)

+stampPart()
FaN
Model3 Right Door Maodel3 Left Door Model3 Hood
Model2 Right Door Model2 Left Door || Model2 Hood ||
Model1 Right Door Model1 Left Door 1| Model Hood [
HstampRigthDoaor() +stamplLefiDoor() HstampHood()

v. Sometimes Creational patterns are competitive,
there are cases wither PROTOTYPE or ABSTRACT

FACTORY could be used profitable. At other times

LIYANA ARACHCHIGE RANIL

Vi.

Vii.

viii.

Xi.

Xii.

xiii.

they are complementary. Abstract factory might
store a set of PROTOTYPES from which components
get built

Abstract Factory , Builder and Prototype can USE
Singleton in their implementation

Abstract Factory , Builder and Prototype defines a
FACTORY object that is responsible for knowing and
creating the class of product objects and make it
parameter of the system

Abstract Factory has the Factory object producing
objects of several classes

Builder has a Factory object building a COMPLEX
product incrementally using a corresponding
complex PROTOCOL

Prototype has the FACTORY object building a product
by copying a PROTOTYPE object

Abstract Factory can be used as an ALTERNATIVE to
FACADE to hide platform specific classes

Abstract Factory EMPHASIS on FAMILY of RELATED
PRODUCTS and this is the most important one
Often design starts out using a FACTORY METHOD
(less complicated) and EVOLVE towards ABSTRACT
FACTORY , PROTOTYPE or BUILDER

LIYANA ARACHCHIGE RANIL

<spng

abstract class abstractBookFactory {
abstract function makePHPBOOk();
abstract function makemysoLBook();

class oReillyBookFactory extends abstractBookFactory {
private $context = "OReilly";
function makePHPBOOk() |
return new ORelllyPHPEBOOK;
h
function makemysolLeook() {
return new OReillyMysqLEook;

class samsBookFactory extends abstractBookFactory {
private $context = "sams";
function makePHPBOOk() |
return new SamsPHPBook;
¥
function makemysqLBook () {
return new SamsMysolLBook;

abstract class aAbstractBook {
abstract function getauthor();
abstract function getTitle();

abstract class abstractmyscleook {
private §subject = "MysoL";

class OReilIyMySoLEook extends AbstractMysSqLBook |
private $author;
private $title;
function __construct() 1
$this-zauthor = 'George Reese, Randy Jay varger, and Tim king';
$this->title = 'Managing and Using MysolL';
1
function getauthor) {
return $this-sauthor;
1
function getTitle) {
return $this->title;

LIYANA ARACHCHIGE RANIL

class SamsMySOLEook extends AbstractMysoLBook |
private $author;
private $title;
function __construct() {
$this-rauthor = 'Paul Dubois';
fthis-»title = 'MysoL, 3rd Edition’;
1
function getauthor() {
return $this-»author;
1
function getTitle() {
return $this->title;

abstract class abstractPHPEook {
private $subject = "PHP";

class OReillyPHPBoOk extends abstractPHPBook {
private $author;
private §title;

private static $oddoreven = 'odd';
function __construct()
{
if ('odd' == self::$oddoreven) {
$this—rauthor = 'Rasmus Lerdorf and Kewin Tatroe';
fthis—»title = 'Programming PHRP';
self: :$oddorEven = 'even';
b
else 1
$this—rauthor = 'David sklar and adam Trachtenberg';
$this—»>title = 'PHP Cookbook';

self: :$oddorEven = 'odd';

b

function getauthor() {
return $this-zauthor;

b

function getTitle() {
return $this->title;

¥

LIYANA ARACHCHIGE RANIL

class samsPHPEoOok extends abstractPHPBook {
private $author;
private $title;
Function __construct() {

mt_srand{{doubledmicrotimed ¥ 100000007;
$rand_num = mt_randCo, 10;

if (1 > $rand_num) {

$this-sauthor = 'George Schlossnagle';
$this->title = 'advanced PHP Programming';
h
else {
$this-»author = 'cChristian wenz';
$this-»title = 'PHP Phrasehbook’';
h

h

function getauthor(l {
return $this->author;

h

function getTitle() {
return $this->title;

¥

writelnl BEGIN TESTIMG ABSTRACT FACTORY FPATTERM'D;
writelnd' ',

writelng' ' testing oreillyBookFactory ' J;
$hookFactoryInstance = new OReillyBookFactory;
TestConcreteractory($hookFactoryInstanceal;
writelnd' ' J;

writelng' ' testing SamsBookFactory' J;
$hookFactoryInstance = new SamsBookFactory;

TestConcreteractory($hookFactoryInstanceal;

writelnd"END TESTIMG ABSTRACT FACTORY PATTERN"I;
writelnd' ';

Function TestConcreterFactory($hookFactoryInstancal

i
fphpBookone = $bookFactoryInstance—>makePHPBOOk ()]
writeln(' first php author: '.$phpBookone-zgetauthor (20;
writelnC first php Title: '.$phpBookone->getTitle(ld;
$phpBookTwo = $bookFactoryInstance—>makePHPEook ()]
writeln' second php author: ' $phpBookTwo->getauthor (O;
writeln(' second php Title: '.$phpBookTwo->getTitle(l];
$mysglBook = $hookFactoryInstance->makeMysSqoLBook (D)

writelnC MySol Author: ' C$mysSglBook-—>getauthorC0;
writelnd mysoL Title: '.$mysglBook->getTitlacl;

b. Builder
i. Separate the construction of a COMPLEX object from
its REPRESENTATION , so that the SAME
CONSTRUCTION process can create DIFFERENT
REPRESENTATION
ii. An application needs to create ELEMENTS of a
COMPLEX AGGREGATE

LIYANA ARACHCHIGE RANIL

1v.

Vi.

Vii.

The DIRECTOR invokes BUILDER services as it
interprets the external format

The BUILDER creates parts of the complex object

each time it is called and maintains all the
INTERMEDIATE STATE

Afford FINER control over CONSTRUCT PROCESS
In FAST FOOD stores this pattern is in use
(Construction of a Childs meal)

Check list

1. Common Input and many possible
representations

2. Encapsulate parsing of the common input in a
READER class

3. Design a standard PROTOCOLE for creating all
possible output REPRESENTATIONS. Capture
the steps of this protocol in a BUILDER
INTERFACE

4. Define a builder derived class for each target
REPRESENTATION

5. Client creates READER object and a BUILDER

object and register the latter with the former

6. Client asks the READER to construct
7. Client ASK the BUILDER to return the results

LIYANA ARACHCHIGE RANIL

viii.

Reader

- theConvarter

Converter

r+parselnput()

+makeline()
+makeParagraphi)
+make Table()
+getDocument()

ASClIConverter

PostScriptConverter

PDFConverter

for each element read
swich element.type
case PARAGRAFH
theConverter.makeParagraph{element)
case LIST
theConverter.makeList(element)
case TABLE
theConverter.makeTable(element)

Customer
{client)

Order Kid's Meal

Cashier
{director)

Build

Get Meal

Build

Build

Build
LN

g —

ARE-»

Restaurant Crew

{builder)

LIYANA ARACHCHIGE RANIL

class Pizza {

private string dough = "";
private string sauce = ""
private string topping = "";

public void setbough(string dough) 1 this.dough = dough; }
public void setsauce(string sauce) i this.sauce = sauce; }
public void setTopping(String topping) { this.topping = topping; }

abstract class pizzaguilder 1|

protected Pizza pizza;

public Pizza getPizzat) { return pizza; }
public void createnewPizzaProduct() { pizza = new Pizza(ld; }

public abstract woid buildoough();
public abstract wvoid buildsauce();
public abstract wvoid buildTopping);

class HawaiianPizzabBuilder extends PizzabBuilder {

public void buildoough() {1 pizza.setpbough("cross"); b

public void buildsauce() 1 pizza.setsauce("mild"); ¥

public void buildTopping() { pizza.setTopping ham+pineapple”l;
b

class spicyPizzaBuilder extends PizzaBuilder {

public void buildoough() 1 pizza.setbough("pan baked"); ¥

public void buildsauce() {1 pizza.setsauce("hot"); ¥

public void buildTopping() { pizza.setTopping"pepperoni+salami”); b
b

LIYANA ARACHCHIGE RANIL

class waiter {

private PizzaBuilder pizzaBuilder;

public void setpizzaBuilder(Pizzaguilder phb) { pizzaBuilder = ph; ¥
public Pizza getrizza() { return pizzabuilder.getpizza(); T

public void constructrizza() {
pizzabBuilder. createnewPizzaProduct (;
pizzabuilder. buildoough();
pizzabuilder. buildsauce();
pizzabuilder. buildTopping(l;

¥
¥

class Builderexample {

public static void main(string[] args) {
waiter waiter = new waiter();
PizzaBuilder hawaiian_pizzabuilder = new HawaiianPizzabBuilder();
PizzaBuilder spicy_pizzabuilder = new spicyPizzabBuilder();

waiter.setPizzabuilder hawaiian_pizzabuilder J;
waiter.constructPrizzall;

Pizza pizza = waiter.getPizza(l;

c. Factory Method
i. Define INTERFACE for creating an object, BUT let

SUBCLASS decide which class to INSTANTIATE.
Factory method lets a class DEFER instantiation to
SUB CLASSES

ii. The new operator considered harmful

iii. A FRAMEWORK needs to standardize the
architectural model for a range of applications , but
allow for individual application to define their own
domain objects and provide for their instantiations

iv. Factory method is to creating objects as Template
methods to implement and Algorithm

LIYANA ARACHCHIGE RANIL

v. Factory method is SIMILAR to ABSTRACT FACTORY ,
but without EMPHASIS on FAMILIES

vi. Client is totally decoupled from the implementation
details of the derived class , Polymorphic creation is

now possible

vii. Injection molding process resembles Factory Method

InjectionMald

+inject()

ZIE.

ToyDinosaurMold

Hnjact])

fﬁ

viii.

A

ToyCarMold

+Hnject|)

wintarfaces
Framework

+makeProduct() : Product

ApplicationOne ApplicationTwo

I ProductOne | [ProductTwo I

FakeProduct() | Praduct HimakeProduct() : Product

Client

1
|
1

returm new ProductOne); B‘

sinterfaces
Abstraction

H+normalMathod|)
+makeObyect{) - Product

%

JIJI.. .
aProduct. makeObject{); ﬁ

= —

- aProduct

Product

ConereteOne

ConcretaTwa

+makeObject() : Product

return new ProductOnel); Ij

ProductOne ProductTwo

LIYANA ARACHCHIGE RANIL

xi. If there is an INHERITANCE HIERACHY that exercise
polymorphism , consider adding a polymorphic
creation capability by defining a static factory
method in the base class

xii. Abstract Factory classes are often implemented with
Factory methods , but they can also be implemented
using Prototype as well

xiii. Factory Method : creation through inheritance ,
Prototype : creation through delegation

xiv. Prototype DOES NOT require SUB CLASSING , but it
requires INITIALIZING , Factory Method REQUIRES
sub classing , but DOES NOT require INITIALIZING

XV.

public interface ImageReader -

public pecodedImage getbDecodedImage();

¥

public class Gifreader implements ImageReader {

public cifreader(Inputstream in) {
A7 check that it's a gif, throw exception if 4t's not, then if it s decode it.
T

public DecodedImage getDecodedImage() {
return decodedImage;

I}

public class JpegReader implements ImageReader {

S
¥

d. Prototype

LIYANA ARACHCHIGE RANIL

Vi.

Specify the kinds of objects to create using a
prototypical instance, and create new object by
copying this prototype

Co-Opt one instance of a class as a breeder for all
future instances

i. The new operator considered harmful

. The Factory knows how to find the correct

PROTOTYPE , and each RPODUCT knows how to
SPAWN new instances of itself
Division of a CELL is an example of prototype
Check List
1. Add a clone method to the existing product
hierarchy
2. design a REGISTRY that maintains a cache of
prototypical objects
3. Design a Factory method that may accept an
argument, find the correct prototype and call
clone on that object
4. Prototypes are useful when OBJECT
INITIALIZATION are expensive
5. Prototype does not require a class , it only
requires an OBJECT

interface Prototype |

¥

interface Command {

F

object <lone();
String getMamet;

void executel]);

LIYANA ARACHCHIGE RANIL

class PrototypesModule {

S420 "registry” of prototypical objs
private static Prototype[] prototypes = new Prototype[9];
private static int total = 0

S oadds a feature to the Prototype attribute of the Prototypesmodule class
A/ ob] The feature to be added to the Prototype attribute
public static void addrrototype Prototype obj O {
prototypes [total++] = obi;
b

public static object findandcloned string name) {
A440 The "wirtual ctor”
for { int i = 0; i < total; i++ O {
if (prototypes[i].getname().equalsC name 3 3 {
return prototypes[1]. clone);
¥
h
System.out. printng name +
return null;
h
¥

not found" 33

S50 sign-up for the clone() contract.
S Each class calls "new" on itself For the client.

class This ‘implements Prototype, Command {

public object clone() {
return new This{);
1
public string getwame() {
return "This";
1
public void execute() {
System. out.printIn{ "This: execute" J;

class That ‘implements Prototype, Command {

public object clone() {
return new That();

1

public string getMame() {
return "That";

1

public void execute() {
System. out. printing "That: execute" J1;

LIYANA ARACHCHIGE RANIL

class Theother implements Prototype, Command {

public object clone() {
return new Theother (J;

i

public string getname() |
return "Theother";

h

public void execute) {
System.out.printing "Theother: execute" J;

h

¥

public class PrototypeDemo {

public static void initializeprrototypes () {
Prototypesmodule, addrPrototype(new This() ;
Prototypesmodule. addPrototype(new That() ;
Prototypesmodule. addPrototype(new Theothar () J;

b

public static woid main{ string[] args 2 {
initializerrototypesCl;
object[] objects = new object[9];
int total = 0;

for (int i=0; i < args.Tlength; i++) {
objects[total] = PrototypesModule. findandcToned args[1] J;
if (objects[total] !'= null) total++;

h

for (int i=0; 1 < total; i++) A
((commandlobjects[1]). execute(l;

ks

ks
T

e. Singleton

i. Ensure the class has only one INSTANCE , and
provide a global point of access to it

ii. Encapsulate the “Just-In-Time initialization” or
“Initialization on fist use”

iii. Applications need one and only one instance of an
Object. Additionally LAZY initialization and GLOBLE
access are necessary

iv. Singleton should be considered only if

LIYANA ARACHCHIGE RANIL

Vi.

Vii.

1. Ownership of the single instance can not be
reasonably assigned

2. Lazy initialization is desirable

3. Global access is not otherwise provided for
Singleton pattern can be extended to support access
to an application specific number of instances
Abstract Factory , Builder , and Prototype can use
Singleton in their implementation

Facade objects are often Singleton

LIYANA ARACHCHIGE RANIL

Singleton

+static instance()

Viil.

public class singleton {

S/ Private constructor prevents instantiation from other classes
private singleton() {}

;’\h"\h’
% SingletonHolder s Toaded on the first execution of Singleton.getInstance()

% or the first access to SingletonHolder.INSTANCE, not hefore.
“

private static class singletonHolder {

private static final singleton INSTANCE = new singletong);
1

pubTlic static Singleton getInstancel) {
return singletonHolder. INSTANCE;
1
T

Goverment

+Election() : Goverment

Retum unique instance

2. STRUCTURAL PATTERNS

LIYANA ARACHCHIGE RANIL

ADAPTOR is walking on the BRIDGE; this bridge is made out of
COMPOSITE material. It is also DECORATED with a FACADE. The
facade has FLYWEIGHTS attached to it. On the other side of the
bridge there is a PROXY waiting to meet adaptor

a. Adapter

Vi.

Vii.

viii.

Convert the interface of a class into another interface
that the CLIENT expects, ADAPTOR lets classes work
together that could not otherwise because of
IMCOMPATIBLE interfaces

. Wrap an EXISTING class with a NEW INTERFACE

IMPEDENCE mismatch an OLD component to a new

system

. An “Off the shelf” component offers compelling

functionality that you would like to reuse , but its
view of the world is not COMPATIBLE with the
PHILOSOPHY and the ARCHITECTURE of the system
currently being DEVELOPED

This can be implemented either with the
INHERITANCE or with AGGREGATION

Adaptor makes things work after they are DESIGNED,
bridge makes them work BEFORE THEY ARE

BRIDGE designed upfront to let the ABSTRACTION
and IMPLEMENTATION vary independently , ADAPTOR
retrofitted to make unrelated classes work together
ADAPTOR provides a DIFFERENT interface to its client
, PROXY provides the SAME , DECORATOR provides
and ENHANCED one

LIYANA ARACHCHIGE RANIL

ix. ADAPTOR is meant to change the interface of an
EXISTING object , Decorator ENHANCES object
without changing the interface

X. FACADE defines a NEW interface whereas ADAPTOR
REUSES an OLD interface

xi. ADAPTOR makes TWO EXISTING interfaces work
TOGETHER as opposed to DEFINING NEW one

Ratchet
112" Drive (male)

3

HH‘H.J
Socket Al
i I 112" Drive (female)
\'}3 1'Drve (femele] 114" Drive (male)

LIYANA ARACHCHIGE RANIL

A0 tadapter”
class Adapter : Target
1

private adaptee adaptee = new adaptes();

public override void Request()
!
S Possibly do some other work
S and then <all specificreqguest
adaptee. specificrequest();
T
T

A5 MAadaptes”
class Adaptee

{

public void specificrequest()

{
Console.writeLine("Called specificRequest(d");

¥

Xii. }

using System;

class Mainapp
1
static void maing)
1
S Create adapter and place a reguest
Target target = new Adapter();
target.Request();

A7 wait for user
console. Read(;

S8 "Target”
class Target

1

public virtual void Reguest()

1
Console.writeLine("Called Target Requesti1");
L

LIYANA ARACHCHIGE RANIL
using System;

class Mainapp

1

static void maing)

1

Target target = new Adapter();
target.Reguest);

console. Read(;
1
1

class Target

1

public virtual void Reguest()

{
Console.writeLine("Called Target Request{1");

i
¥

b. Bridge

i. Decouple an ABSTRACTION from its
REPRESENTATION so that the two can vary
INDEPENDENTLY

ii. PUBLISH interfaces in an INHERITANCE hierarchy ,
and BURY IMPLEMENTATION in its own INHERITANCE
HIERACHY

iii. PROBLEM: Hardening of the software arteries has
occurred by using sub classing of an ABSTRACT class
to provide ALTERNATIVE implementations. This locks
in COMPILE TIME binding between INTERFACES and
IMPLEMENTATIONS

LIYANA ARACHCHIGE RANIL

1v.

ThreadScheduler
AN
|Praemptiu&111:&ad$chadular] [TIm&SIi:&HThII'eadthedular |
FAN
[| | |
[unixpTs | |WindowsPTS | | UnixTsTs | |WindowsTsTs |

| JUM_PTS JVM_TSTS

ThreadScheduler

[
|Preempﬂvu‘l11mad5chudulur |Thread$nheduler_lrnplem&ntalian |

|Ti meSlicedThreadScheduler |

[UnixPTS | |'-I"|'ind-crw5PT$|

JYM_PTS

v. The INTERFACE object is the “HANDLE” known and
used by the CLIENT , while the IMPLEMENTATION
object or “BODY"” is safely encapsulated to ensure

that it may CONTINUE to EVOLVE or be ENTIRELY
REPLACED

vi. USE BRIDGE pattern when
1. Want RUN-TIME binding of the
IMPLEMENTATION

LIYANA ARACHCHIGE RANIL

2. Have proliferation of CLASSES resulting from a
COUPLED interfaces and numerous
implementations

vii. Improved EXTENSIBILITY

Client

InterfaceEncapsulation | _ yecimpiement IntorfaceEncapeulation

= " [FdoThisoned)
+doThis() +doThisTwo()

‘% [= |

InterfaceSpecialization

ImplementationCne ImplementationTwo

+doThisOre()
H+daThisTwal()

thelmplement.doThisTwol),

thelmplement. deThisOnel); Il']

viii.

ix. State, Strategy, BRIDGE have similar solution
structures, they all share elements of BODY /
HANDLE idiom. They DIFFER in INTENT, they resolve
DIFFERENT PROBLEMS

X. The STRUCTURE of STATE and BRIDGE are identical.
The two patterns use the SAME structure to SOLVE
different problems

LIYANA ARACHCHIGE RANIL

Xi.

using System;

class Mainapp

1

static void mMaing)

{

Abstraction ab = new Refinedabstraction);

A0 set Amplementation and call
ab.Implementor = new ConcreteImplementoral);
ab.operationg);

A4 change dmplemention and call
ah. Implementor = new ConcreteImplementorB();
ab.operation);

A wait for user
console.Read();

LIYANA ARACHCHIGE RANIL

class shstraction

1

protected Implementor implementor;

public Implementor Implementor

1
set{ implementor = walue; }
I
public virtual void operation()
1
implementor.Cperationd);
I

abstract class Implementor

1

public abstract woid operationt);

class refinedabstraction : abstraction
{

public override woid operationg)

1

implementor.cperationg);
Xii.

class ConcreteImplementorad @ Implementor

{

pubTlic override void operation()

1

Console.writeLine("ConcreteImplementora operation”);

I

class ConcreteImplementorE : Implementor

{

public override void operation()

1

console.writeLined"ConcreteImplementors operation”);

'
xiii, ?

c. Composite

LIYANA ARACHCHIGE RANIL

i. Compose objects in to TREE structure to REPRESENT
WHOLE/PART hierarchies. COMPOSITE lets clients
treat individual objects and COMPOSITIONS of objects
UNIFORMLY

ii. Recursive Composition

iii. PROBLEM: Application NEEDS to manipulate a
HIERACHICAL collection of “PRIMITIVE” and
“COMPOSITE” objects. Processing of PRIMITIVE object
is handled one way and processing of COMPOSITE
object is handled DIFFERENTLY. Having to QUERY the
type of each object before attempting to process is
NOT DESIRABLE

ainterfaces
Component

-+ This()

Leaf Composite -alements

>

1
|

1

Neontainer functionality
for each element

+addElamearnt])

rdoThis() ek Thisd) i

elements(i].doThis{);

iv.
v. Check List
1. Ensure that the problem is WHOLE/PART
hierarchical relationships
2. Creates a LOWEST COMMON DENOMINATOR
interface that makes your containers and
containees interchangeable
vi. Composite and Decorator both have SIMILAR

structure diagrams

LIYANA ARACHCHIGE RANIL

vii. Composite can be traversed with an ITERATOR ,
VISITOR can apply an operation over a COMPOSITE
viii. DECORATOR is designed to let you add
RESPONSIBILITIES to OBJECTS without SUBCLASSING
ix. COMPOSITES focus is NOT on EMBELLISHMENT but on
REPRESENTATION
X. The whole point of the COMPOSITE pattern is that the
COMPOSITE can be treated ATOMICALLY

interface Component { woid traverse(); } A4 10 "lowest “common denominator”

class primitive implements Component { A420 "Isa' relationship

private int value;
public primitive(int wal) { wvalue = wal; }

public void traverse() 1 system.out.print(wvalue + " " 25 F
b
abstract class Composite implements Component { A420 "Isa' relationship
private Component[] children = new Component[2]; ./ 3. Couple to dnterface
private int total = 0;
private int walue;
public Composite(int wal) { value = wal; }
public void add(Component <) { children[total++] = <; T /7 3. Couple to
public wvoid traverse() { s interface
System.out.print{ value + " " 3
for {int i=0; i < total; i++)
children[i].traversef); A4 4. pelegation and polymorphism
ol
class Row extends Composite { A4 Two different kinds of "con-
public row(int wal) { super¢ wal J; } A4 tainer” classes. mMost of the
public wvoid traverse() { A4 "meat” ds din the Composite
System.out.print{ "Row" J; A4 base class.
super.traverse(];
ol

Xi.

LIYANA ARACHCHIGE RANIL

class Row extends Composite |

public row(int val J { super¢ wval J; T

public void traverse() {
system.out.print{ "Row" J;
super.traversa(];

Yol

class Column extends Composite {

public columng int wval) { super(wal J; }
public void traverse() {
System.out.print{ "Col" J;
super.traversal];
. ol
XII.
public class CompositeDemo {

public static void main¢ string[] args D A

Composite first = new Row(1 J;
Composite second = new Column(2 J;
Composite third = new Column(3 J;
Composite fourth = new Row(4 J;
Composite fifth = new Row(5 J;

first.add{ second J;

first.add] third J;

third. add(fourth J;

third. add(fifth J;

first.add] new Primitive 6 3 3

second. add{ new Primitive 7 3 23

third. add{ new Primitivel 3 3)
20
20

fourth. add{ new Primitivel 2
fifth.add{ new Primitive(lo
first.traverse);

d. Decorator

i. Attach ADDITIONAL RESPONSIBILITIES to an object
DYNAMICALLY. DECORATOR provides a FLEXIBLE
ALTERNATIVE to SUBCLASSING for extending
functionality

ii. Client specified EMBELISHMENT of a CORE object by
recursively wrapping it

iii. Wrapping a GIFT , putting it in a BOX , Wrapping the
BOX

LIYANA ARACHCHIGE RANIL

iv. You want to ADD BEHAVIOURS or STATE to
INDIVIDUAL objects at RUN TIME. Inheritance is not

FEASEABLE because it is STATIC and APPLIES to an
ENTIRE class

Window

+draw}
AN

I
Window_With_Vertical_Scrollbar |

Window_With_Border
A

Winduw_‘.'lﬁth_HorizuM_Scwllburl

Window_With_Vertical_and_Horizontal_Scrollbar |
|

|WI ndow_With_Vertical_and_Horizontal_Scrollbar_and_Border

V.
winterfaces
LCD
+ofraw)
[=2 |
Window Decorator
Hdraw() +draw}
T |
| Border | |verti-:a|sa] |HurimnIaI$B|
Vi.

vii. This pattern allows responsibilities to be added to an
Object, not METHODS to an Objects interface. The

interface presented to the client MUST remain
CONSTANT

LIYANA ARACHCHIGE RANIL

Viii.

iX.

Xi.

Xii.

winterfaces
Interface

-+ THis()

Y
| |

CoreFunctionality OptionalWrapper -wrappee

>
TaoTHED CdoThel F—————-— wrapee.doThis():

OptionalOne OptionalTwo | | OptionalThree

FdaThis) doThis() rdoThis() ===

1

|

1
Hoptional functionality, I
Hprovided by this class J
super.daThis();

/imore optional functionality

Decorator provides and ENHANCED interface ,
Adapter provides a DIFFERENT interface to its
subject, proxy provides the SAME interface
Decorator is designed to let you add
RESPONSIBILITIES to objects without sub classing
Decorator and Proxy have different purpose , but
similar structures. Both describes how to provide
level of INDIRECTION to another object
DECORATOR lets you change the SKIN of an object,
STRATEGY lets you change the GUTS

LIYANA ARACHCHIGE RANIL

using System;

class Mainapp
1
static void Maing)

{

Concretecomponent < = new Concretecomponent(d;
Concretebecoratora dl new Concretebecoratoral]);
Concretebecaorators d2 = new ConcretebDecoratorBll;

dl. setComponent £cl;
d2. setComponent {dl];

dz.operation();

Console. Read(];

abstract class cComponent

1

public abstract void operation();

class ConcreteCfomponent @ Component
{
public override void operation()
1
Console.writeLinel "Cancretecomponent. operation()"l;

¥

abstract class Decorator @ Component

{

protected Component COMponent;

public void setComponent(Component component)

d

this. component = component;

¥

public override void operation()
1

Af {component = nulld

1

component. operationd];

¥

XivV.

LIYANA ARACHCHIGE RANIL

class Concretebecoratord @ Decorator

1

private string addedstate;

public override wvoid operation()
{
hase.operation();
addedstate = "New State”;
console.writeLine("Concretebecoratora.operation(l");
}
ks

class Concretebecoratorg @ Decorator

{
public override void operationg)

{
hase.operationg);
Addedeehavior{;
cConsole.writeLine("Concretebecoratorg.operation()");
b
void addedeehavior()
{

¥

¥
XV.

e. Facade

i. Provides a unified interface to a set of interfaces in a
SUBSYSTEM

ii. Facade defines a HIGHER level interface that makes
the SBSYSTEM easier to use

iii. Wrap a COMPLICATED sub system with a SIMPLER
interface

iv. PROBLEM : A segment of the client community needs
a SIMPLIFIED interface to the overall FUNCTIONALITY
of a COMPLEX sub system

v. Facade discusses ENCAPSULATIN a complex
subsystem within a SINGLE interface object. This
promotes DECOUPLING the SUB SYSTEM from its
potentially many clients

LIYANA ARACHCHIGE RANIL

vi. Facade should be FAIRLY SIMPLE advocate or
facilitator , it should not become an ALL-KNOWING

ORACLE or GOD object

Vii.

All the complexity of this entire
sub-system is encapsulated in
a single wrapper class and
it's simgle interface

]

SubsystemOne

+primeT hieDiractiva()

|
\ Suhsystum'll'woWrappnr éﬂ!ﬁf

SubsystemThrea

Holodeck

Weaapon

PlasmaConduit / \L
WarpCore
JefferiesTube \J/
DilithiumChamber

Transporter TurboLift PhaserBack

PhotonTorpedo

q_

LIYANA ARACHCHIGE RANIL

Customer service

Facade
Order Billing | | Shipping I
Fulfillmernt

viii.
ix. Facade defines a NEW INTERFACE, whereas ADAPTER
uses and OLD interface.
X. Facade objects are often SINGLETONS , since only
one Object is needed

using System;

class Mainapp

{

public static void main()

{

Facade facade = new Facade();

facade.methodad);
facade.methode();

A4 wadt for user
Console.Read();

Xi. ¥

LIYANA ARACHCHIGE RANIL

Xii.

xiii.

4 SUDSYSTem Classa
class subsystemone

{
pubTlic void Methodone()
1
Console.writeLine(" SubSystemone Method");
T
ki

A4 subsystem Classg”
class subsystemTwo

{
pubTlic woid MethodTwo()

1

console.writeLine(" subSystemTwo mMethod");

¥

A4 subsystem Classc”
class subsystemThree

1

pubTic woid methodThrea()

1
console.writeLine(" subsSystemThree method");
h

S subsystem Classp”

class subsystemFour

1
public void methodrFour()
1
Console.writeLine(" subsSystemFour mMethod");
T
h

LIYANA ARACHCHIGE RANIL

class Facade

{
SubsSystemone one;
SubSystemTwo two;
SubsSystemThree three;
SubsSystemFour four;

public Facade()

{
one = new SubSystemone();
two = new SubSystemTwo();
three = new subSystemThree();
four = new SubSystemFour();

¥

public woid Methoda()
{
Console.writeLine("\rMethodal) ———— "7;
one.Methodone(;
two.MethodTwo);
four.methodFour
¥
public woid Methods()
{
Console.writeLine("\rMethodB() ——— "J;
two.MethodTwo();
three.MethodThree();

¥

. ¥
XIV.

f. Flyweight

i. Use sharing to support LARGE NUMBER of FINE-
GRAINED objects efficiently

ii. The MOTIF GUI strategy of REPLACING heavy-weight
WIDGETS with light-weight GADGETS

iii. PROBLEM : designing objects down to the lowest
levels of system “GRANULARITY” provides optimal
“FLEXIBILITY’, but can be unacceptably EXPENSIVE in
terms of PERFORMANCE and MEMORY usage

LIYANA ARACHCHIGE RANIL

iv. Each FLYWEIGHT object is divided into two pieces,
STATE-DEPENDENT (EXTRINSIC) , STATE-
INDEPENDENT (INSTRINSIC)

v. INTRINSIC state is stored in the FLYWEIGHT object ,
EXTRINSIC state is stored or computed by the CLIENT

vi. FLYWEIGHTS are stored in a FACTORY'S REPOSITORY,
the client restrain herself creating Flyweight directly

Client Factory

+makelnsect(in type, in state)
!

- cache

/

BillionSpecies

FdoThis(in extrinsicState)

FAN

Locust Cockroach Ant
LintrinsicState FintrinsicState lintrinsicState
HdoThis(in extrinsicState) +doThis(in extrinsicState) +doThis(in extrinzsicState)

vii.

17 g8
'
\ _I_N—AI—J Genergit‘:rerPT:i

[Dial Tone
Generator

3

viii. Create a FACTORY that can cache and reuse existing

class instances

LIYANA ARACHCHIGE RANIL

using System;
using system.Collections;

class Mainapp
1
static void Maind)
1
int extrinsicstate = 22;
FlyweightFactory f = new FlyweightFactory();
Flyweight fx = f.GetFlyweight ("x");

fx.0operation(--extrinsicstatel;

Flyweight v = f.GetFlyweight("v");
fy.operation{--extrinsicstate);

Flyweight fz = f.GetFlyweight("z");
fz.operation{--extrinsicstate);

UnsharedconcreteF lyweight uf = new
unsharedconcreter Tyweight (;

uf.operation{-—-extrinsicstate);

conszole.Read();

LIYANA ARACHCHIGE RANIL

class FlyweightFactory

{
private Haszhtable flyweights = new Hashtable();

public FlyweightFactory()

{
flyweights. add("x", new ConcreteFlyweight({));
flyweights. add("y", new ConcreteFlyweight(1);
flyweights. add("Z", new ConcreteFlyweight(1);

T

public Flyweight GetFlyweight(string key)
{
return((Flyweight)flyweights [key]);
¥
¥

abstract class Flyweight

1
public abstract void operationint extrinsicstate];
X. !
class ConcreteFlyweight @ Flyweight
1
pubTic override void operation{int extrinsicstate)
{
Console.writeLine!"Concreter lyweight: " + extrinsicstate];
¥
¥
class UnsharedConcreteFlyweight : Flyweight
1
public override woid operationf{int extrinsicstate)
{
Caonsole.writeLine("UnsharedConcreter Iyweight: " +
extrinsicstatel;
¥
¥
g. Proxy

i. Provides a SURROGATE or PLACEHOLDER for another
object to CONTROL access to it

LIYANA ARACHCHIGE RANIL

V.

Use an EXTRA LEVEL of INDIRECTION to support
distributed , controlled or intelligent access

Add a wrapper and delegation to protect real

component from undue complexity

PROBLEM : Need to support RESOURCE HUNGRY
object and do not want to INSTANTIATE such objects
unless and until they are actually REQUESTED by the
CLIENT

There are FOUR common situations in which the

PROXY pattern in applicable

1.

A VITUAL PROXY : a place holder for EXPENSIVE
to CREATE objects

. A REMOTE PROXY : provides a LOCAL

REPRESENTATIVE for an object that resides in a
different ADDRESS SPACE, this is what the
STUB code in RPC and CORBA provides

. A PROTECTIVE PROXY: controls the access to a

SENSITIVE MATTER object. The surrogate
object checks that the caller has the access
permissions required prior to forwarding the
request

A SMART PROXY: interposes ADDITIONAL
actions when an object is accessed. Typically
CONTROLLING the NUMBER OF REFERENCE to
the real object so that when there are no
references it can be FREED, LOADING a
PERSISTANCE object into MEMORY when its
first accessed , checking that the real object is
LOCKED before it is accessed to ensure that no
other object can CHANGE it

LIYANA ARACHCHIGE RANIL

Payment

FAmount{}

ay
_f‘ f Fy | B e I |

¥ RealSubject
X

- i. CheckProxy

“undsPakdFromdccount
V1.

oo —— e
Subject

+dolt])

[]
Proxy RealSubject

wrapee
— Jrdolt(} +oolt()

===

{f wrapee-=dalt();

{f Optional functionality
{i Optional functionality

vii. CHECK LIST

1. Define an INTERFAC that will make the PROXY
and the ORIGINAL component interchangeable

2. Consider defining a FACTORY that can
encapsulate the decision of whether a PROXY
or ORIGINAL object is desirable

3. The wrapper class holds a POINTER to the REAL
class and implements the interface

4. The pointer may be initialized at the
CONSTRUCTION ot on FIRST USE

LIYANA ARACHCHIGE RANIL

viii. Decorator and Proxy have different purposes, but
similar structures. Both describes how to provide a
level of indirection to another object

using swstem;

A4 Mainapp test application
class Mainapp
{
static wvoid main(d)
1
A4 Create proxy and reguest a service
Proxy proxy = new Proxy();
proxy. Request(;

S watt for user
Console, read(];

A "subject”
abstract <lass subject
1
public abstract woid Request(];

¥

A4 "realsubject”
class Rrealsubject @ subject
1
public override woid Request()
1
Console.writeline"Called Realsubject.Request(l"];
1
b

S8 Proxy”
class Proxy @ sSubject

1
Realsubject realsubject;

public override wvoid Request()
1
S Use 'lazy dnitialization’
if (realsubject == null)
1
realsubject = new Realsubject(];

¥

realsubject.Request();

LIYANA ARACHCHIGE RANIL

3. BEHAVIORAL PATTERNS

As a boss | have a RESPONSIBILITY to COMMAND my
INTERPRETER to MEADIATE my interviews. He should
OBSERVE all the candidates and keep their STATE in his
MEMORY. Later he should ITERATE over all the candidate
results using an appropriate STRATEGY and prepare a
TEMPLATE along with a VISITOR

a. Chain of Responsibility

ii.

Avoid coupling the sender of a request to its receiver
by giving MORE THAN ONE OBJECT to HANDLE the
request.

CHAIN the RECEIVING objects and PASS the REQUEST
along the CHAIN until and object HADLES it

Single processing PIPELINE with many possible
HANDLERS

. PROBLEM : There is a potentially variable number of

“HANDLERS ” or PROCESSING ELEMENTS or NODE
objects and a STREAM of REQUESTS that must be
handled

Need to efficiently process the requests without
HARD WIRING handler relationships and precedence

LIYANA ARACHCHIGE RANIL

Request

| Client |}

|Procesaing elementl

|Pro==essing F.Iernentl

|Pmnessing element |

|Froneeslng elamsnll

Vi.

vii. Chain of Responsibility SIMPLIFIED OBJECT
INTERCONNECTION

viii. Do not USE Chain of responsibility when each request
is ONLY handled by ONE HANDLER or when the
CLIENTS knows which SERVICE OBJECT should handle

the request

nextHandler handlal); Ij

= nextHandler— Handler
+handlel) =
HandlerOne HandlerTwo
+handle() =1

iX.

If | can handle request

ffhandie it

else
super,handla();

x. Chain of Responsibility, Command , Mediator and
Observer address how you can DECOUPLE SENDERS

and RECEIVERS

LIYANA ARACHCHIGE RANIL

using System;

class mainapp

1
static void mMain)
1
Handler hl = new ConcreteHandlerl();
Handler h2z = new ConcreteHandlerz();
Handler h3 = new ConcreteHandler3();
hl.setsuccessorCh2l;
h2.setsuccessar(hil;
int[] requests = {2, 5, 14, 22, 18, 3, 27, 20}
foreach (int reqguest in reguests)
!
hl.Handlerequest(request];
b
console. Read();
b
b

Xi.

ahstract class Handler

1

protected Handler successar;

public wvoid setsuccessor(Handler successor)

1

this.successor = successar;

public abstract woid Handlerequest(int reguest);

class ConcreteHandlerl : Handler

{

public override void Handlerequest({int reguest)

1
if (reguest »= 0 && request < 100

1
cConsole.writeLine"{0} handled request {1}",
this.GetType(). Name, reguestl;

¥

else if (successor !'= nulld

1

successor.Handlerequestrequest);

Xii.

LIYANA ARACHCHIGE RANIL

class concreteHandlerz : Handler
1
public override woid HandlerRequest{int regquest)
1
if (request »= 10 && request < 200
{
Console.writeLine(" {0} handled reguest {1}",
this.GetType(). Name, reguest);
I
else if (successor '= null)
1
successor, Handlereguest(requast];
1
1
h

class cConcretedandler3 : Handler

1

public override woid Handlereguest{int reguest)
{
if (reqguest = 20 &% reguest =< 300

{
Console.writeLine(" {0} handled reqguest {1}",

this.GetType().Name, reguest);

¥

else if (successor !'= null)

1

successor, HandleReguest (reguest);
i
h

xiii.

b. Command

i. Encapsulate a request as an Object ,thereby letting
you PARAMETERIZE clients with DIFFERENT
REQUESTS , QUEUE of LOG requests and SUPPORT
undoable operations

ii. Command DECOUPLES the object that INVOKES the
OPERATION from the one that KNOWS how to
PERFORM it

iii. PROBLEM : need to issue requests to objects
WITHOUT knowing anything about the OPERATION
being REQUESTED or the RECEIVER of the REQUEST

LIYANA ARACHCHIGE RANIL

iv.

Client ainlerfaces RRCe)
Callbackinterface
+exaculef) +doThis()
+doThat()
|
| ZP targetObject = recelverChject;
I targethathod = mathodPointer;
I -fargetObject
T
|
| |callbackOne CallbackTwo |
: Gagethetod . |_____ i
I +eonstructor{receiverObject, methodPointer)
| +executel)
|
|

{l use Java reflection or

{f C++ or Delphi pointer

{18 member function
targetObject targatMethod();

Callbackinterface token =

new Callback Twolnaw Receiver)), "daThis™);
_. the token object is passed to ancther

... object and that object calls
token.exacute]);

v. Command objects can be thought of as TOKENS that
are CREATED by ONE CLIENT and PASSED to
ANOTHER CLIENT that has resource for DOING IT

Customer Waitress Order Cook
(client) (invoker) {command) (receiver)
| I I I
| I I I
| | PlaceCrder) | |
| | I [

: Nz :
| | ook N
| I I I

Vi.

vii. CHAIN OF RESPONSIBILITY , COMMAND ,
MEADIATOR , OBSERVER address how to DECOUPLE
SENDERS and RECEIVERS

LIYANA ARACHCHIGE RANIL

viii. TWO important aspects of COMMAND pattern,

INTERFACE SEPARATION (invoker is isolated from

receiver) , TIME SEPARATION (stores a ready to go

processing request that is to be started LATER)
using Ssystem;

class mainapp

{
static woid Maindd
{
A Create receiver, command, and invoker
Receiver receiver = new Receiver();
Command command = new ConcreteCommandreceiverl;
Invaoker drvoker = new Invoker(l;
A4 st and execute command
Tnvoker. setcommandcommand;
Tnwoker. ExecuteCommand);
A4 wait for user
Console.Read(;
T
I

A "Command”
abstract class Command
1

protected Receiver receiver;

S constructor
public Command(receiver receiwver)
1

this.receiver = receiver;

¥

public abstract woid Execute(];

¥

A5 "Concretecommand”
class Concretecommand @ Command
1
S/ constructor
public ConcreteCommand(Receiver receiver) :
haselreceiver)
1
b

public override woid Execute()
1
receiver. Actionll;
¥
i

LIYANA ARACHCHIGE RANIL

Xi.

A5 "Receiver”
class Receiver

1

pubTic void Action(d

1

Console.writeLine("Called Receiver.Action(1"];
T
I

A5 "Tnwoker
class Invoker

1

private Command command;

pubTlic void setcCommand(Command command)

1

this.command = command;

¥

public void ExecuteCommandd)
1
command. Executel]);
T
¥

C. Interpreter

Given a LANGUAGE define a REPRESENTATION for its
GRAMMER along with an INTERPRETER that uses the
representation to INTERPRET sentences in the
LANGUAGE

MAP a DOMAIN -> (to a) -> LANGUAGE , the
LANGUAGE ->(to a) -> GRAMMER and GRAMMER ->
(to a) -> HIERACHYCAL OBJECT ORIENTED DESING
A class of problems occurs REPEATEDLY in a WELL-
DEFINED and WELL-UNDERSTOOD domain. If the
DOMAIN were characterized with a LANGUAGE , then
the PROBLEM could be easily SOLVED with an
INTERPRETATION ENGINE

LIYANA ARACHCHIGE RANIL

iv. Each RULE in the GRAMMER is either a COMPOSITE or
a TERMIANL

v. INTERPRETER RELIES on the RECURSIVE traversal of
the COMPOSITE PATTERN to INTERPRET the
SENTENCES it is asked to PROCESS

Client winterfaces al 1
AbstractExpression - SRmenis
tsofvefinout Context)

[|
Context TerminalExpression CompoundExpression
+solve(inout Context)

i perfarm "parent” functionality
if then delegate to each "child” element

ff "Context” is data structure for
 holding input and ocutput

Vi.
vii. Example situation is a MATEMATICAL EQUATION and
the input values
viii. The INTEPRETER patterns DEFINES a GRAMMERTICAL
representation for a LANGUAGE and an INTERPRETER
to INTERPRET the GRAMMER

The following Reverse Polish notation example illustrates the interpreter pattern. The grammar
expression ::= plus | minus | varisble

plus ::= expression expression '+'

minus = expression expression '-!

variskhle (= 'a' | 'h" | 'e'] ... | 'E!

defines a language which contains reverse polish expressions like:
ab +
abcoc+ -

ab+ca - -

LIYANA ARACHCHIGE RANIL

X.

LIYANA ARACHCHIGE RANIL

Xi.

‘While the interpreter pattern does not address parsingm a parser is provided for completeness.

import java.util.HashMap;
import java.util.Btack:

class Evaluator implements Expression |
private Expression syntaxTree;

public Evaluator(String expression) |
Stack-<Expressions expressionStack = new Stack-<Expression={);
for (String token : expression.splic(" ")) {
if (token.emuals("+"1) {
Expression subExpression = mew PlusiexpressionStack.popi), expressionStack.pop()l;
expressionStack.push(subExpression |;
}
elge if (token.equals("-"1) |
S it's necessary remove first the right opersnd from the siack
Expression right = expressionBtack.popi);
S o and after the left one
Expression left = expressionBtack.pop();
Expression subExpression = new Minus(left, right):
expressionftack.push(subExpression |;
4
elze
expressionftack.push(new Variable(token));
b
syntaxTree = expressionbtack_ popi);

b

public int interpret (HashMap<String, Expressions context) |
return syntaxTree. interpret (context);

d. lterator
i. Provides a way to access the elements of an
AGGREGATE object sequentially WITHOUT EXPOSING
its underlying REPRESENTATION
ii. C++ and JAVA that makes it possible to DECOUPLE
COLLECTIONS classes and ALGORITHMS

LIYANA ARACHCHIGE RANIL

V1.

Promote to FULL OBJECT STATUS the traversal of a
COLLECTION

Polymorphic traversal

Nee to ABSTRACT the TRAVERSAL of WILDLY
different DATA STRUCTURES so that ALGORITHMS
can be defined that are capable of INTERFACING with
each transparently

An AGGREGATE object such as a LIST should give a
way to access its elements without EXPOSING its
internal structure. Also it is needed to traverse the
LIST in different ways. But you don’t BLOAT the list
interface with these traversal related operations

LIYANA ARACHCHIGE RANIL

Client

AggregateBase TteratorBase

+Createlterator(): IteratorBase +Arst(): object
Hhextf): object
+urrentliem{): object
+=0one(): boo!

L

ConcreteAggregate ConcreteIterator

-aggregate: ConcreteAggregate

+First(): object
+hlext(): object
+Currentltem(): object
+IsDone(): boal

+Createlterator(): [teratorBase

Client Collection

t+oreate TraversalObject() - TraversalAbstraction

&

TraversalAbstraction ListCallaction MapCollection
Hirst() +oreate TraversalObject() +createTraversalObject() [~
+ i) ,1{ 1|
[HisDone() i "

!

!’l refurn new ListTraversal{this):

AY
MapTraversal ListTraversal

——

LIYANA ARACHCHIGE RANIL

Vii.

using System;
using system.Collections;

class Mainapp

1

static woid maind)

d

ConcreteAfogredate a = new CoOncreteAggregatel);
afo] = "Ttem A";

afl] = "Item B";
af2] = "Item C";
al[3] = "Item D";

S/ Create Iterator and provide aggregate
Concretelterator i1 = new Concretelterator{al;

console.writeLine("Iterating over collection:");

object dtem = 1.First(];

while (item !'= nulll

{
Console.writeline(item);
item = J.Mextl;

S wait for user
Console.Read();

A U"Iteratar”
abstract class Iterator

1

public abstract object First();
public abstract object Mext();

public abstract bool Isbone();

pubTic abstract object CurrentItem();

LIYANA ARACHCHIGE RANIL

S "Concretelteratar”
class Concretelterator @ Iterator

{
priwvate Concreteaggregate aggregate;
priwvate int current = 0;

S Constructor
public Concretelterator(Concreteaggregare aggregate’

{
this.aggregate = aggregate;

1

public owverride object First()

{

return aggregate[o];

1

public owerride object Next(]

{
object ret = null;
if [current < aggregate.Count - 1)

{
ret = aggregate[++current];

1

return ret;

1

public owerride object CurrentItem()

{

return aggregatel[current];

1

public owerride bool IsDonel)

{

FETUrA CUFFENt == aggregate.count 7 true @ false

1
viii. !

e. Mediator

i. Define an object that ENCAPSULATE how a set of
objects INTERACT

ii. MEADIATOR promotes LOOSE COUPLING by keeping
objects from REFERRING each other EXPLICITLY and
it lets you vary their INTERACTION independently

iii. Design an INTERMEADIATORY to DECOUPLE many
PEERS

LIYANA ARACHCHIGE RANIL

iv. PROBLEM : Want to design REUSABLE components,
but DEPENDENCIES between the potentially reusable
pieces demonstrate the SPAGHETTI CODE

T —

Jack u

ADM

X =

Larmry DEV

§

V. Alax ROOT
A B
USERS ADM

X =
GRDUF’S
DEV

Lamy MAPPING

£ E]

Vi Alex ROOT
Structure
Client
Wy
Producer Mediator Consumer

- natify() +slore} =+ ot
vii. ’ e -

LIYANA ARACHCHIGE RANIL

viii. Colleagues or Peers are not coupled to each other,
each TALK to MEADIATOR

iX.
ATC Mediator

—

_—
/ s
Flight 7E7

il
=
M
Flight 747 D N

Flight 1011 Flight 112

X. Be careful not to create a CONTROLLER or GOD
object

LIYANA ARACHCHIGE RANIL

using System;
using system.Collections;

class Mainapp

{

static woid Maini)

{

ConcreteMediator m = new ConcreteMediatar(];

ConcreteZolleaguel cl new ConcreteCalleaguel(ml;
ConcreteZolleaguez C2 = new Concretecolleaguez(m);

m.Colleaguel cl;
m.Colleaquez = C2;

cl.Send("How are wou?"l;
cz.send("Fine, thanks'"];

SF wait for user
Console.read];

Xi.

LIYANA ARACHCHIGE RANIL

S5 "Mediator”
abstract class Mediator
{
public abstract woid Send(string message,
Caolleague colleaguel;

SF UConcreteMediator”
class ConcreteMediator @ Mediator

{
priwvate ConcreteColleaguel colleaguel;
priwvate ConcreteColleaguez colleaguez;
public ConcreteColleaguel Colleaguel
{
set{ colleaguel = wvalue; }
1
public ConcreteColleaguez Colleaguez
{
set{ colleaguez = wvalue; }
1
public owverride woid Send(string message,
Colleague colleague)
{
it [(colleague = colleaguel]
{
colleaguez. Noti fwimessage];
1
else
{
colleaguel.Notifwimessagel;
1
1
1

Xii.

LIYANA ARACHCHIGE RANIL

AF "Calleague”
abstract class Colleague

{

protected Mediator mediator;

A4 Constructor
public Colleague(Mediator mediator)

{

this.mediator = mediator;

A& "ConcreteColleaguel”
class ConcreteColleaguel : Colleague
{
AF Constructor
public Concretecolleaguel(Mediator mediator)
base(mediator)

{
1
public woid Send(string message]
{

mediator. Sendi(message, thisl;
1

public woid Motify(string message]

{
Console.writeLine("Colleaguel gets message: "
+ messaqge’;

xiii. 1

LIYANA ARACHCHIGE RANIL

S "ConcreteZolleaguez”
class <oncreteColleaguez @ Calleague
{
S Constructor
public ConcreteColleaguez (Mediator mediator)
i base(mediatar)

{
1
public woid Send(string message])
{

mediator,.send(message, this);
1

public woid Motify(string message)
{

Console.writeLine("CZalleaguez gets message: "
+ message’l;

Colleague? gets message: How are you?

v Colleaguel gets message: Fine, thanks

f. Memento

i. Without VIOLATING encapsulation , CAPTURE and
EXTERNALIZE an object INTERNAL state so that
Objects internal state can be returned to this later

ii. PROMOTE undo or ROLL back to FULL object status

iii. PROBLEM : Need to restore an object back to its
previous state

iv. The client request MEMENTO object from the source
object when it needs to CHECKPOINT the source
objects state

v. The source object initializes the MEMENTO with a
characterization of its state

vi. The client is the CARE TAKER of the MEMENTO

LIYANA ARACHCHIGE RANIL

Vii.

Vviil.

But only the SOUCE object can store and retrieve
information from the MEMENTO

ORIGINATOR - the object that knows how to SAVE
itself , CARETAKER - the object that knows why and
when the originator needs to save and restore itself ,
MEMENTO - The lock box that is written and read by
the ORIGINATOR and shepherded by the CARETAKER

Structure

Originator
Fslate

+sathvamentod) =
—{+createMementol) :
|

return new Memeanto|state); Il}

o
l-slate

gelSiate()

+setState()

siate = m-=getSiate(); ﬁ

LIYANA ARACHCHIGE RANIL

X.

import jawa.util.=;

class Memento {

priwvate String state;

public Memento(String stateToSave) { state = stateToSawe; }
public String getSavedstate() { return state; }

class originator {

private string state;

A% Tots of memory consumptive priwvate data that is not necessary to define the

* state and should thus not be sawved. Hence the small memento object.

public woid set(String state] {
System.out.println("Originator: Setting state to "+state];
this.state = state;

public Memento sawveToMementol(d) |
System, out.printini'originator: sawving to Memento.'"]l;
return new Memento(statel;
1
public woid restoreFromMementoMemento m) {
state = m.getsawvedstate(]);
System,out.printin("originator: sState after restoring from Memento:

*/

“+5tatel;

LIYANA ARACHCHIGE RANIL

Xi.

class Caretaker {
priwvate ArraylList<Mementox savedStates = new Arraylist<Mementos (]}

public woid addMemento(Memento m) { sawedStates.addiml; }

public Memento getMemento(int index) { return sawvedstates.get(index]; 1

1

class MementoExample {
public static woid main(string[] args) {

Caretaker caretaker = new Caretaker(];
originator originator = new ariginatori];
originator.set('"statel"];
originator.set("Statez"];
caretaker.,addMemento(originator.saveToMementoll 7;
originator.set("State3"];
caretaker,addMemento(originator,.saveToMementoll 1;
originator.set('"stated"];

originator.restorefFromMemento caretaker.getMemento(l) J;

g. Observer
i. Define a ONE-to-MANY dependency between objects

so that when one object changes state , all its
dependants are notified and updated automatically

ii. The VIEW part of the MVC

iii. PROBLEM : A large MONOLITIC design does not
SCALE well as new GRAPHING or MONITORING
requirements are levied

iv. Observers REGISTER themselves with the SUBJECT

v. The SUBJECT broadcast EVENTS to ALL REGISTRED
Observers

LIYANA ARACHCHIGE RANIL

vi. The SUBJECT may PUSH information at the
OBSERVER or , the OBSERVES may PULL the
information they need from the SUBJECT

Subject views + | Observer
B madel

+attach(in Observer) [fupdats()
| —{*setState))
I +oetStatel) I 1
: ViewOne ViewTwo
|
| Hupdatel) Hupdate()

for each view In views
v.updatel)

) 1
model gatstatel);
Vii.

g Auctioneer {Subject)

1. Accept Bid 2. Broadcast New High Bid
<

V v

77 4

L Bidders (Observers)
VIII,

LIYANA ARACHCHIGE RANIL

using System;
using System.Collections;

class Mainapp

1

static void maing)

1

A4 Configure Chserver pattern
Concretesubject s = new Concretesubjectil;

s.attachCnew Concretechserver (s, "="10;
s.attachinew Concretechserver(s, "v"17;
s.AattachCnew Concretechserver(s, "Z2"1]);

A Change subject and notify observers
s.5ubjectstate = "ABC";
S MOTiTYC);

A4 wait for user
Console. Read(;

LIYANA ARACHCHIGE RANIL

S8 "concretechserver "
class Concretechserver @ observer
1
private string name;
private string observerstate;
private Concretesubject subject;

A4 Constructor
public Concreteohserver(
Concretesubject subject, string name)

this.subject = subject;
this.name = name;

public override void Update()
{
observerstate = subject.subjectstate;
Console.writeLine("ohserver {0}'s new state is {1}",
name, ohserverstate);

AL Property
public Concretesubject subject

{
get { return subject; 7
set { subject = walue; |

LIYANA ARACHCHIGE RANIL

Xi.

SO "Concretechserver
class Concretecbserver : ohserver
1
private string name;
private string ohserverstate;
private Concretesubject subject;

A4 Cconstructaor
public Concretechserver(
Concretesubject subject, string name)

this.subject = subject;
this.name = name;

public override void update()
1
obhserverstate = subject.subjectstate;
cConsole.writeLine!"ohserver {0}'s new state is {11},
name, observerstatel;

S Property
public Concretesubject subject

1

get { return subject; &
set { subject = wvalue; }

LIYANA ARACHCHIGE RANIL

h. State

Vi.

Vii.

viii.

Allow an Object to alter its BEHAVIOR when its
INTERNAL state changes. The object will appear to
change its class

. A monolithic objects BEHAVIOUR is a FUNCTION of its

state , and it must change its behavior at RUNTIME
depending on the STATE

Define a CONTEXT class to present a SINGLE
interface to the OUTSIDE world

Define a STATE abstract base class

Represents the DIFFERENT state of the state
machine as DERIVED classes of the State base class
Define state-specific behavior in the appropriate
State derived class

Maintain pointer to the current state in the context
class

To change the state of the MACHINE change the
CURRENT STATE POINTER

iXx. The state pattern DOES not define WHERE the state

TRANSITION will be DEFINED. There are two choices ,
The CONTEXT object or each individual STATE
derived class

LIYANA ARACHCHIGE RANIL

X.
| Client
N

gogient current State
= = =rrgoiext() -
I +satStatafin State) +goNext(in context)
I AN
|

current.goMextithis; Il\] StateOne StateTwo StateThree

r Htgohexi(in contencd)
|
|

context satSiate(StataTwo); ﬁ

xi. Example of state is VENDING machine. Vending
machine has states based on the INVENTORY ,
amount of CURRENCY deposited , etc

VendingMachineState

| T

VendingDepositState VendingStockState

Xii.

LIYANA ARACHCHIGE RANIL

xiii. The STRUCTURE of STATE and BRIDGE are identical.
The two patterns use the same structure to solve
different problems

using System;

class Mainapp

1
static woid mMain()
1
S Setup context in a state
context ¢ = new Context(new Concretestatea());
A4 Issue requests, which toggles state
C.REQqUesT);
c.Request();
c.Request();
c.Request();
S/ wait for user
Console.Read();
h
¥
L7 Ustate”
abstract class state
1
public abstract void Handle{Context context);
¥

Xiv.

LIYANA ARACHCHIGE RANIL

XV.

A4 'state”
abstract class state
1

pubTic abstract woid Handle(Context context);

A4 "Concretestates”
class Concretestatea : State
1
public override woid HandlefContext context)

1

Ccontext.state = new Concretestates();

A4 "Concretestates”
class Concretestated : State
1
public override woid Handle{Context context)

{

comtext.State = new Concretestateal]);

LIYANA ARACHCHIGE RANIL

A4 "Context”
class Context

1

private State state;

S/ constructar
public Context(state state)

1
this.state = state

h

A4 Property
public state State

1
get{ return state; T
sat

1
state = value;
Console.writeLinel " "state: " +
state.GetType(). Name);
T
¥

public void Request()

1

state.Handlefthis);

h

. T
XVI.

i. Strategy

i. Define a FAMILY of ALGORITHMS, encapsulate each
one and make them INTERCHANGEABLE. Strategy
lets the algorithm vary independently from the
clients that use it

ii. CAPTURE the ABSTRACTION in an INTERFACE , bury
IMLEMENTATAION details in derived classes

iii. OPEN for EXTENSION closed for MODIFICATION

LIYANA ARACHCHIGE RANIL

program to an interface, not an implementation

ainterfaces
Lo

open for extension

— — — 7| closed for modification

+dnSamething()

él‘:.

ImplementationOne ImplementationTwo

+doSomething() +doSomethingl)

N
Context Interface
- slrateay =
H+algorithm()
I |
ImplementationOne ImplementationTwo
+algorithmi) +algorithmi)

LIYANA ARACHCHIGE RANIL

Vi.

TransportationToAirport s = Strategies{Options)

Personal Car Taxi City Bus

vii. Strategy lets you change the GUTS of an object while
DECORATOR lets you change the SKIN

LIYANA ARACHCHIGE RANIL

viii.

using system;

class Mainapp
{

static void Maing)

1

Context <Context,

S Three contexts following different strategies
context = new Contextinew ConcretestrateqyA());

context.ContextInterfacel]);

CONtext = new Contextinew ConcretestrategyB());

context.ContextInterface]);

COntext = new Contextinew ConcretestrategyC());

context.ContextInterfacel]);

S wadt for user
Console.Read(]);

A4 Ustrategy”
abstract class Strategy

1

public abstract void aAlgorithminterface();

i

A4 NConcretestrategya’
class Concretestrategyhs ! Strategy
{
public override void algorithmInterface()

1

console.writeLined

"Called Concretestrateqgya.AlgorithmInterface(l");

A "Concretestrategys”
class ConcretestrategyB : Strategy
1

public averride void algorithminterfaced)

1

console.writeLinef

"Called ConcretestrateqyE.AlgorithmInterface)");

LIYANA ARACHCHIGE RANIL

S "ConcretestrategyC”
class ConcretestrategyC @ Strategy
1

public override void AlgorithmInterface()

1

Console.writelLinet
"Called concretestrategyc.algorithmInterface(l");

T

T

S UContext”
class Context

{

Stratedgy stratedy;

A Constructor
public Context(strateqgy strategy)

1

this.strategy = strategy;

F

public woid ContextInterface()
1
strategy. Algorithminterface();
T
T

j. Template Method

Define the SKELETON of an ALGORITHM in an
OPERATION, deferring some steps to CLIENT
subclasses. TEMPLATE METHOD lets SUBCLASSES
REDEDFINE certain steps of an ALGORITHM without
changing the ALGORITHMS structure

Base class DECLAIRS algorithm “PLACEHOLDERS”
and derived classes IMPLEMENT the PLACEHOLDERS
TEMPLATE method is used PROMINANTLY in
FRAMEWORKS

LIYANA ARACHCHIGE RANIL

iv.

FrameworkClass

slepOne();
ttemplateMethod() - — o stepTwo();
+3tepOne() stepThree();
+stepTwol()
+siepThresa()

ZP

[|

ApplicationClassOne ApplicationClassTwo

FstepTwol) HrstepTwol)

v. TEMPLATE method uses INHERITANCE to vary PART

Vi.

Vii.

of an ALGORITHM. STRATEGY uses DELEGATION to
vary the ENTIRE ALGORITHM
FACTORY method is a SPECIALIZATION of TEMPLATE
method

using System;

class Mainapp
{

static woid Maing)

1
AbstractClass ¢;

¢ = new Concreteclassal);
c.Templatemethod();

C = new ConcreteClassBl);
c.Templatemethod();

A2 wadt for user
Console.Read();

LIYANA ARACHCHIGE RANIL

S Uakbstractclass”
abstract class abstractclass

{
public abstract wvoid Primitiveoperationlc);
public ahstract woid Primitiveoperationz();

S/ The "Template method"

public woid Templatemethod()

{
Primitiveoperationl();
primitivecperationz (;
Console.writeLine" " ";

}

T

S 'concreteclass”
class Concreteclassa @ abstractclass

1

public override void Primitiveoperationle)

1

console.writeLine"Concreteclassa. Primitiveoperationl)");

¥

pubTlic override void Primitiveoperation2()

1

console.writeLine("Concreteclassa. Primitiveoperation2()");

¥
Viii.

class Concreteclassg @ abstractclass

1

pubTlic override void Primitivecperationl()

1

Console.writeLine("Concreteclasse. Primitivedsperationl)"y,

¥

public override void pPrimitivecperationz()

1

console.writeLine("Concreteclassg. Primitiveoperationz ("),

}
iX. ¥

k. Visitor
i. Represents an OPERATION to be performed on the
elements of an object structure
ii. The approach ENCOURAGES designing LIGHTWEIGHT
element classes. Because processing functionality is
removed from there list of RESPONSIBILITIES. New
FUNCTIONALITY can easily be added to the ORIGINAL

LIYANA ARACHCHIGE RANIL

Vi.

Vii.

inheritance HIERACHY by crating a new VISITOR
subclass

VISITOR lest you define a new operation without
changing the classes of the elements on which it

operates

. The classis technique of RECOVERING lost type

information

PROBLEM : Many distinct and unrelated operations
need to be performed on node objects in a
heterogeneous aggregate structure

You want to AVOID polluting the node classes with
these operations.

Visitor is not good for situations where VISITED
classes are not stable. Every time a new COMPOSITE
hierarchy derived class is added , every VISITOR
derived class must be amended

LIYANA ARACHCHIGE RANIL

viii.

winterfaces
Element

7AY

ElementOne ElementTwo

Haccept(in v : Visitor)

w.visit{this);

S5 "visitor”
abstract <lass wisitor

{

ginterface:s
Visitor
+isil(in & ; ElameantOna)
+uisit{in e | Elament Twa)

|
ainterfacesVisitorOne

+uisif(in e Efemarrm:?a}
+visllfin & : Elemen Two)

The concrate types of the

Element and Visitor objects have
been "recovered”. Perform the work
apropriate for their pair of types.

public abstract void visitConcreteE]lemental
ConcreteElements concreteE]lemental;

public abstract void visitConcreteE]lementB(
ConcreteElementE concreteElementBl;

A4 "Concretevisitorl”
class Concretevisitorl

{

o wvisitor

public override void visitConcreteElementaf
ConcreteE]ements concreteE]lemental

{

Console.writeLine("{0} wisited by {1}",
concreteElementd. GetType(). Name, this.GetType().Name]);

pubTic override void visitConcretee]lementE(
ConcreteElementB concreteE]lementB)

{

Console.writeline(" {0} wisited by {1},
concretee]lementE. GetTypa(). Mame, Tthis.GetTypa().Mama);

LIYANA ARACHCHIGE RANIL

S "Concretevisitor2”
class Concretevisitorz @ wisitor

1

public override woid visitConcreteElemental
ConcreteElements CconcreteE]emental

Console.writeline("{0} wisited by {1}",
concreteElementA. GetType(). Mame, this.GetType(). Mamel;

public override wvoid visitConcreteElementB(
ConcreteElementB concreteE]ementh)

Consale.writeLine("{0y visited by {1}",
concreteElementB. GetType(). Mame, this.GetType().Namel;

S5 "Element
abstract class Element

1

public abstract woid Accept{visitor wisitor);

X, I

A8 ConcreteElement A
class ConcreteElementa @ Element

{

public override woid accept(visitor wisitor)

1

visitor.visitConcreteElementalthis);

public woid operationafl)

1
¥

S8 "ConcreteElementE”
class ConcreteElementE : Element

{

public override vold accept(visitor wisitor)

1

visitor.visitConcreteElementB(this);

public woid operatione()
1
iy

Xi.

LIYANA ARACHCHIGE RANIL

S8 "ConcreteE]l ementa
class ConcreteElements @ Element

1
public override void Accept(visitor wisitor)

1

visitor.visitConcreteElementalthis);

public wvoid operationad)
1
¥

A8 "ConcreteEl ementB”
class ConcreteElements @ Element

{

public override woid Accept(vwisitor wisitor)

1

visitor.visitConcreteelementB({this];

public void operationec)
1
1

Xii.

LIYANA ARACHCHIGE RANIL

A4 "ohjectstructure”
class obhjectstructure

1

private ArraylList elements = new ArrayList();

pubTic woid attach(Element element)

1
elements. add{element];

I

pub1lic woid petach(Elemant element)

{

elements. Remove(elementl;

i

pubTlic woid Accept(visitor wisitor)

{

foreach (Element e in elements)

1

e.Accept (visitor);

¥

