
LIYANA ARACHCHIGE RANIL

ARCHITECTURE DECOMPOSITION

1. There are five ways that an Architect can decompose a large
system in to smaller components

a. Layering or Distribution
b. Exposure , Functionality or Generality
c. Coupling and Cohesion (Low Coupling , High Cohesion) or

Volatility
d. Configuration
e. Planning , Tracking and Work Assignment

2. If a system is decomposed by Layering , it will not be
decomposed by Distribution

3. The system would be decomposed until you see that it can be
decomposed by any of the above mentioned in the same order

4. System will be decomposed in the order above mentioned
5. System will not be decomposed first by Planning, Tracking and

Work Assignment and then trying to do Layering and
Distribution. Instead follow the above order from “a” to “e”

6. Layering > Order the system in to different layers where by
each layer provides some service to the upper layer while
consuming some service from the layer underneath

7. Layering is some sort of an ordering of Principles or sort of
ordering of abstractions

8. Layering is one of the top level decomposition and others would
follow that

9. Layering can be done in Tier or in a Layer it self
10. Distribution > Distribution is performed among

“COMPUTATIONAL RESOURCES”
11. Distribution could be resulted due to following nature of

the large system ,
a. Dedicated task own, their thread of control. Hence some

processes do not need to wait for this process
b. Many clients need access
c. Greater fault isolation
d. Distribution for separation of concern can be applied with

redundancy which allows for high availability
12. Exposure > How a components is exposed and consumes other

components. Any given component has three major task ,
services , logic and integration

13. Functionality > functionality is grouping within the problem
domain and separating concerns based on that. For example

LIYANA ARACHCHIGE RANIL

login module , customer module , inventory module etc. If the
operational process is in mind , this is easilty achievable

14. Generality > decomposing based on generality means trying to
understand components which can be used in other places as
well. But when it comes to generality it is important not to make
a component general for a requirement that does not exist

15. Coupling & Cohesion > this decomposition says keep things
together that work together and keep things away that works
away. So it is better to have low coupling and high cohesion

16. Volatility > Decomposing bases on volatility means identifying
the sections or parts in the larger system which may change
frequently. And keep those together. Usually this is applicable
to User Interfaces.

17. Configuration > having a target system that must support
different configurations. For example security , performance ,
usability etc

18. Planning , Tracking > Attempt to develop a fine grained
project plan that takes into account Ordering dependencies and
Sizing

a. Ordering is understanding the dependencies among
modules

b. Sizing is dividing the tasks in to smaller pieces which can
be developed in an iterative pattern

c. A good architecture must have very limited number of bi-
directional or circular dependencies

19.Work Assignment > Decomposing the system based on the
skill set of the team members working on the project. This is the
last thing to do when all above decomposition strategies have
been applied

TIERS

1. Tier is a logical or physical organization of components in to an
ordered chain of service providers and consumers

2. A tier would consume services from adjacent service provider
tier and would provide services to adjacent service consumer tier

3. Tiers in tradition architectures are CLIENT , WEB
(PRESENTATION) , BUSINESS , INTEGRATION
(MIDDLEWARE) , RESOURCE

4. CLIENT TIER > any device that is used to access the display and
local interaction of a system can be considered as a client tier.
This tier is very much not in control and highly volatile and
varying in nature

LIYANA ARACHCHIGE RANIL

5. WEB (PRESENTATION) TIER > the tier which deals with
rendering , personalization of views , content formatting ,
content transformation etc is considered to be WEB or
Presentation tier. This tier manages channel specific user
sessions

6. BUSINESS TIER > any tier which extract away the business
logic is the business tier. Usually PRESENTATION tier uses
BUSINESS tier services to execute the processing logics. The
Heart of a system can be considered to be lying in the business
tier. Business tier services may include activities from sending
mails, authentication, authorization services and also managing
modules such as customer profile, pay role etc.. This tier
manages TRANSACTIONS

7. INTEGRATION TIER > This tier would help integrating the
business tier to external data sinks, data feeds, data bases etc.
The tier is also known as middleware tier. Due to the varied
and external nature of this tier, the tier itself is kept as very
much loosely coupled. Loosely coupled paradigms used could be
QUEUEING, PUBLISH/SUBSCRIBER COMMUNICATION.
SYSNCHRONOUS AND ASYNCHRONOUS POINT TO POINT
MESSAGING etc.

8. RESOURCE TIER > This tier is identified as the data sources,
sinks, feeds etc. This tier is abstracted away as Integration tier to
keep loosely coupled nature. This tier is also known as DATA
TIER

9. TIERS represents processing chains across components while
LAYER(S) represents container / component relationships

LAYERS

1. A layer could be separation of principles or some abstractions
2. A layer is a hardware and software stack that host some

services within a given TIER
3. Layers have well defined ordered relationship and interface

boundaries
4. Layers represents container , component relationships
5. Typical layers are Application , Virtual Platform (Component

API) , Application Infrastructure (Containers) , Enterprise
Services (OS and Virtualization) , Compute and Storage
(Hardware) , Networking (Switcher , Routers etc)

6. APPLICATION LAYER > after delegating all the responsibilities
to other layers whatever is left are application specific.

LIYANA ARACHCHIGE RANIL

Application layer is what makes a system unique from other
systems. Combines user and business functionality

7. VIRTUAL PLATFORM (Component API) > Virtual Platform
consist of the Component APIs on which APPLICATION is
developed. Ex. Servlet API , JDBC api , EJB API etc.

8. APPLICATION INFRASTRUCTURE (Container) > Application
infrastructure is provided by the containers it self. Ex, Tomcat ,
EJB container etc

9. ENTERPRISE SERVICES (OS and VIRTUALIZATION) > This
layer provides necessary OS and virtualization support for
Application infrastructure

10. COMPUTE and STORAGE (Hardware layer) > Contains the
physical hardware. Enterprise services run on the compute and
hardware layer

11.NETWORKING INFRASTRUCTURE > anything to do with
networking, load balancers, routers etc.

SERVICE LEVEL REQUIREMENTS

1. Service Level Requirements are also known as Non Functional
Requirements or QoS (Quality of Service) as well

2. Service level requirements that must be address by a typical
architecture are SCALABILITY , RELIABILITY , AVAILABILITY ,
EXTENSIBILITY , MAINTAINABILITY, MANAGEABILITY ,
PERFORMANCE , SECURITY (All in all 8)

3. As an architect you must be able to achieve the stakeholder
expectation between these quality of service requirements

4. If the main interest is PERFORMANCE , then you have to sacrifice
the EXTENSIBILITY and MANAGEABILITY of the system may be

5. PERFORMANCE > time taken for a given screen transaction per
user (In terms of RESPONSE TIME) or number of transactions for
a given time , usually 1 sec (TRANSACTION THROUGHPUT)

6. SCALABILITY > As the load increases system should be able to
provide the expected Quality Of Service without any changes to
the system.

a. A system can be though of as scalable only if it as the load
increases the system still responds within acceptable
limits

b. Capacity is the maximum number of processes that a
system can sustain under the existing infrastructure while
still maintaining the quality of service

LIYANA ARACHCHIGE RANIL

c. If a system is running at it’s capacity and if it can not
respond within allowable limits the system has reached it’s
maximum scalability

d. To scale a system that has met with its capacity you
MUST add additional HARDWARE

e. This additional hardware can be added HORIZONTALLY
or VERTICALLY

f. Horizontal scaling is adding new servers while Vertical
scaling is adding new RAM and processors , disk to the
CURRENT machine

g. Horizontal Scaling is adding more machines to the
environment hence increasing the overall capacity of the
system

h. Horizontal Scaling is difficult than Vertical Scaling,
making a system work like one which is deployed in few
other machines is much more difficult

7. RELIABILITY > As the load on the system increases system
should function as the way it functioned before the increased
load

a. Reliability ensure the INTERGRITY and
CONSISTANCY of the application and all of its
TRANSACTIONS

b. If a system is not RELIABLE the system is not SCALABLE.
Hence the RELIABILITY aspect has a NEGATIVE impact on
SCALABILITY

c. For a system to truly SCALE , it MUST be RELIABLE

8. AVAILABILITY > A system must be accessible by users at all
the times.
a. RELIABILITY can CONTRIBUTE to AVAILABILITY

(RELIABILITY -> AVAILABILITY)
b. But AVAILABILITY can be achieved even if a

component fails (AVAILABILITY ->X , RELIABILITY)
c. By setting up an environment of redundant components

and failover AVAILABILITY can be achieved

9. EXTENSIBILITY > extensibility is ability to add new feature to
the system without effecting the existing functionality.

a. You can not measure EXTENSIBILITY at the system
deployment time

b. It shows up at the first time when you try to add a new
functionality

LIYANA ARACHCHIGE RANIL

c. To have a system support extensibility try “LOW
COUPLING” , “HIGH COHESION” , “PROGRAMMING
FOR INTERFACES” , “ENCAPSULATION”

10.MAINTAINABILITY > How easy to maintain the system, how
easy to fix errors or bugs in the system with out effecting the
existing system. Maintainability would be improved if there is
good DOCUMENTATION , MODULARIZATION ,LOW
COUPLING etc

a. This system quality can not be measured at the
deployment time

b. Only when system flaws need to be corrected , this would
come up

11.MANAGEABILITY > Manageability is the ability to manage the
system to ensure the continued health of the system with
respect to scalability, availability, reliability, security,
performance.

a. Manageability deals with system monitoring of the QoS
requirements and ability to change the system
configuration to improve the QoS dynamically without
changing the system.

b. Your architecture must have the ability to MONITOR the
system and allow for DYNAMIC system configuration

12. SECURITY > security is the ability to ensure that the system is
NOT COMPROMISED
a. Creating an architecture that is separated into functional

components makes it easy to secure the system since you
can build security zones around the components

b. If a component is failed , you can contain the security
violation to that component

DIMENTIONS OF SYSTEMS

1. From a system computational point of view , you can think of the
layout of an architecture (Tiers and Layers) as having six
independent variables that are expressed as dimensions

a. CAPACITY
b. REDUNDANCY
c. MODULARITY
d. TOLERANCE
e. WORKLOAD

LIYANA ARACHCHIGE RANIL

f. HETEROGENEITY
(CRM to Work heta)

2. CAPACITY > Capacity dimension is the RAW power in an
ELEMENT.

a. CAPACITY is increased through VERTICAL SCALING
b. VERTICAL SCALING is also know as HEIGHT
c. CAPACITY can IMPROVE , PERFORMANCE , AVAILABILITY ,

SCALABILITY
3. REDUNDANCY > Multiple systems that work on the same job

a. Load balancing among several web servers is an example
b. REDUNDANCY is increased through HOROZONTAL SCALING
c. HORIZONTAL SCALING is known as WIDTH
d. REDUNDANCY can increase PERFORMANCE , RELIABILITY ,

AVAILABILITY, EXTENSIBILITY,SCALABILITY
e. REDUNDANCY can decrease PERFORMANCE,MANGEABILITY

and SECURITY
4. MODULARITY > how you divide a computational problem in to

separate elements and spread those elements across multiple
computer systems

a. Modularity indicates how far into a system you have to go
to get the data you need

b. MODULARITY can increase SCALABILITY , EXTENSIBILITY ,
MAINTAINABILITY , SECURITY

c. MODULARITY can decrease
PERFORMANCE,RELIABILITY,AVAILABILITY and
MANAGEABILITY

5. TOLERANCE > The time available to full fill a request from a
user

a. TOLERANCE is closely bound with the overall perceived
PERFORMANCE

b. TOLERANCE can increase PERFORMANCE , SCALABILITY ,
RELIABILITY , MANAGEABILITY

6. WORKLOAD > Computational work being performed at a
particular point within the system

a. WORKLOAD is closely related to CAPACITY in that workload
consumes available CAPACITY

b. WORKLOAD can increase PERFORMANCE , SCALABILITY ,
AVAILABILITY

7. HETEROGENEITY > Diversity in technologies that is used
within a system or one of its subsystems

a. HETEROGENETY comes from the variation of technologies
that are used within the system

LIYANA ARACHCHIGE RANIL

b. This could happen due to gradual accumulation over time ,
inheritance or acquisition

c. HETEROGENITY can increase PERFORMANCE , SCALABILITY
d. HETEROGENETY can decrease PERFORMANCE ,

SCALABILITY , AVAILABILITY,EXTENSIBILITY ,
MANAGEABILITY and SECURITY

INCREASE
D

Scalabil
ity

Availabili
ty

Reliabilit
y

Extensibi
lity

Manageab
ility

Maintainab
ility

Performa
nce security

Capacity
increas

ed
increase

d
increase

d

Redundan
cy

increas
ed

increase
d

increase
d

increase
d decreased

increase
d/

decrease
decreas

ed
Modularit

y
increas

ed
decrease

d
decrease

d
increase

d decreased increased
decrease

d
increas

ed

Tolerence
increas

ed
increase

d increased
increase

d

Workload
increas

ed
increase

d
increase

d

Heterogen
eity

increas
ed/

decrea
se

decrease
d

decrease
d decreased

increase
d/

decrease
decreas

ed

TIERS Security
Availabilit

y Scalability
Extensibili

ty
Manageab

ility
Maintainab

ility
Reliabi

lity
Performa

nce
TWO
TIER

Advanta
ges

Disadvant
ages

Disadvant
ages

Disadvant
ages

Disadvant
ages

Disadvanta
ges

Non Of
Two

Advantag
es

THREE
TIER

Non Of
Two

Advantag
es

Advantag
es

Advantag
es

Advantag
es

Advantage
s

Any of
Two

N-TIER
Non Of

Two
Advantag

es
Advantag

es
Advantag

es
Advantag

es
Advantage

s
Any of
Two

COMMON PRACTICES FOR IMPROVING SERVICE LEVEL
REQUIREMENTS

LIYANA ARACHCHIGE RANIL

1. INTRODUCING REDUNDANCY TO THE SYSTEM ARCHITECTURE

The choice depends on the COST of the implementation and
the REQUIREMENT. (Such as PERFORMANCE and SCALABILITY)

2. LOAD BALANCING

a. Implement load balancing to address architectural
concerns such as THROUGHPUT and SCALABILITY

b. Load balancing helps you distribute the workload across
several smaller machines instead of using one large
machine

c. This typically results in lower COST and better use of
computing resources

d. To implement load balancing , you usually select a load-
balancer implementation based on its PERFORMANCE
and AVAILABILITY

i. Load balancing in network switches > advantage
of speed

ii. Load balancers in cluster management software
and application servers > managed closer to
the application components , which gives
greater flexibility and manageability

iii. Load Balancers based on the server instance DNS
configuration > Advantage of being simple to
set up, does not address the session affinity

e. Load balancing provides variety of ALGORITHMS

i. Round Robin ALG – Picks each server in turn
ii. Response-time or first available ALG –

Constantly monitor the response time of the
server and pick the one which responds quickly

iii. Least loaded ALG – Constantly monitor server
load and select the server that has the most
available capacity

iv. Weighted ALG – specifies a priority on the
preceding algorithms, giving some servers more
work load than others

v. Client DNS-based ALG – Distribute the load
based on the clients DNS host and domain name
info.

LIYANA ARACHCHIGE RANIL

3. FAILOVER

a. You can use to minimize the likelihood of SYSTEM
FAILURE

b. Failover is a system configuration which allows one
server to assume identity of a failing server within the
network

c. One important aspect of failover is available CAPACITY,
which can be handled in two ways

i. Designing with extra capacity

All the systems work for you, but at low usage level.
This means that you are spending money on extra
computing resources that will not be used under
normal load and operation condition

ii. Maintaining a stand-by server

You are spending money on a system that does
no work for you unless it is needed as a failover
server

4. CLUSTERS
a. Also minimize the likelihood of a system FAILURE
b. Clustering will help a system to be more scalable and

High Available (HA)
c. Cluster is a group of server systems and support

software that is used to manage the server group
d. Cluster provides high availability to system resources
e. Cluster software allows group administration
f. Cluster software detects hardware failure
g. Cluster software detects software failure
h. Cluster software handles systems failovers
i. Cluster software automatically starts services in a event

of failure
j. There are different cluster configurations that are

available
i. Two Node Cluster (Symmetric and Asymmetric).

You can either run both servers (Symmetric) or
run only one server and keep the other as the hot
standby (Asymmetric). This is the minimum high
availability cluster that can be built

LIYANA ARACHCHIGE RANIL

ii. Clustered Pair – places two machines in to the
cluster, and then uses two of those clusters to
manage independent services. Uses to manage
highly coupled data services , such as an
application server and its supporting data base
server

iii. Ring – a configuration topology that allows any
individual node to accept the failure of on of its
neighboring nodes (not supported under SUN
Cluster)

iv. N+1 (Star) cluster – N independent nodes and 1
backup node to which all clusters would fail over.
The back up must be able to handle all the failed
ones

LIYANA ARACHCHIGE RANIL

v. Scalable (N-to-N) – A configuration that has
several nodes in the cluster and all nodes have
uniform access to data storage medium.
1. The Data storage medium must support the

scalable cluster by providing a sufficient
number of simultaneous node connections

5. IMPROVING PERFORMANCE

a. Important to distinguish two types of times

i. Processing Time – Times spent in computing ,
marshalling , un marshaling , buffering and
transporting data

ii. Blocked Time – Lack of resource , dependency of
other processing

b. Ways to increase the PERFORMANCE of a system ,
i. Increase the system capacity by adding more raw

processing power
ii. Increase the computational efficiency by

employing efficient algorithms
iii. Introduce cached copies of data to reduce the

computation overhead
iv. Introduce concurrency to the computations that

can be executed in parallel
v. Limit the number of concurrent request to control

overall system utilization
vi. Introduce intermediate response to improve the

performance perceived by the user

LIYANA ARACHCHIGE RANIL

vii. To improve the throughput it is advisable to have
timeouts for operations which involve external
systems

6. IMPROVING AVAILABILITY
a. Factors that effect system availability are

i. System downtime
ii. Long response time

b. Most common practice to improve the system
availability is through replications

i. Active Replication

1. The request is sent to all the redundant
components which operate in parallel, and
the only one generated response is used. In
active replication system downtime is short
since all the component are actively
synchronized

ii. Passive Replication

1. Only one of the replicated components
(PRIMARY) responds to the request. The
state of other components (SECONDARY)
are synchronized with the PRIMARY
component. In the event of a failure the
service can only be resumed if a secondary
component has a sufficiently fresh state

7. IMPROVING EXTENSIBILITY
a. The need for extensibility typically originated from the

change of a requirement
b. Clearly define the scope in the service level agreement
c. Anticipate expected changes. You should identify

commonly changed areas of the system and isolate
these areas into one coherent component. This will
minimize the RIPPLE effect

d. Design a high quality OBJECT MODEL –The object model
of the system has an IMMEDIATE impact on its
extensibility and flexibility. Apply essential object
oriented concept , principles and appropriate
architectural design patterns to your architecture

LIYANA ARACHCHIGE RANIL

TIERS IN ARCHITECTURE

1. An architecture can have multiple LOGICAL tiers such as
client , web service and data base server , but deployed in
same physical server

2. With the advent of virtualization , the physical location has
become immaterial

3. When talking about Two Tier , Three Tier , or N – Tier the
client tier is usually not included unless explicitly
mentioned as two tier CLIENT/SERVER

4. TWO TIER systems are traditionally CLIENT / SERVER
systems

5. Most TWO TIER systems have THICK client that includes
both PRESENTATION and BUSINESS LOGIC and a DATA
BASE SERVER

6. The presentation and business logic were typically tightly
coupled

7. You could also have a browser based TWO TIER system
with business and database on the same server

8. TWO TIER > ADVANTAGES
a. SECURITY – HIGH – Most of the systems are behind

the cooperate firewall
b. PERFORMANCE – HIGH – unless the company uses

very old laptops that have minimum memory
9. TWO TIER – DISADVANTAGEOUS

a. AVAILABILITY – BAD – if one component fails , then
the entire system is unavailable

b. SCALABILITY – BAD – The only component that can
be scaled is the DB

c. EXTENSIBILITY – BAD – In order to add new
functionality you will effect all others , hence
extensibility fails

d. MANAGEABILITY – BAD – You can not monitor all the
clients

e. MAINTAINABILITY – BAD – Has the same problem as
EXTENSIBILITY , to change one it effects all

10. TWO TIER – NO EFFECT

LIYANA ARACHCHIGE RANIL

a. RELIABILITY – Not an advantage or disadvantage. As
the load increases most of the DB servers can be
reliable

THREE TIER and N-TIER SYSTEMS

1. THREE TIER systems are comprised of WEB, BUSINESS
LOGIC and RESOURCE TIER.

2. MULTI TIER systems are comprised of WEB , BUSINESS
LOGIC , INTEGRATION and RESOURCE TIER

3. They share the same advantage and disadvantage when it
comes to Non functional requirements

4. THREE TIER / N – TIER > SCALABILITY – GOOD –
a. Scalability is improved over two tier system since

now presentation logic and business logic is
separated.

b. The business logic is now running on a server which
can be CLUSTERED

5. THREE TIER / N- TIER > AVAILABILITY – GOOD –
a. Availability is improved over two tier system since

now the tiers can be clustered and can be provided
failover

6. THREE TIER / N – TIER > EXTENSIBILITY – GOOD –
a. Extensibility is improved over two tier since now

functionality is separated in to tiers. A change to
once component will not have a ripple effect on the
others

7. THREE TIER / N-TIER > MAINTAINABILITY – GOOD –
a. Maintainability is improved since the functionality is

separated in to tiers now. You could modify
presentation with minimal or no effect to business
logic

8. THREE TIER / N – TIER > MANAGEABILITY – GOOD –
a. Greatly improved since the tiers are deployed on

Servers and these servers can be monitored
9. THREE TIER / N- TIER > SECURITY - NON OF TWO –

a. Allows for more points to secure
b. But can effect performance due to more points

10. THREE TIER / N- TIER > PERFORMANCE – GOOD / BAD
both
a. Since different component can work on its own job

the performance may go high. But at the same time

LIYANA ARACHCHIGE RANIL

performance could go low if so much of data should
be transferred from one tier to another

11. THREE TIER / N – TIER – DISADVANTAGE – INHERATLY
COMPLICATED

