
LIYANA ARACHCHIGE RANIL

SHORT NOTES / MARK CADE / HUMPHY SHEIL / BUSINESS TIER 

TECHNOLOGIES

1. EJB is a SERVER SIDE COMPONENT used in J2EE architecture 

to ENCAPSULATE a SPECIFIC PIECE of BUSINESS LOGIC

2. EJB(S) are DISTRIBUTED COMPONENTS

3. They can be ACCESSED LOCALLY or REMOTELY

4. EJB(S) SIMPLIFIES the development of LARGE , DISTRIBUTED 

application , since EJB container provides SYSTEM-LEVEL 

SERVICES to EJB(S), then the bean DEVELOPER can FOCUS on 

SOLVING the BUSINESS PROBLEM

5. BEAN contains the BUSINESS LOGIC, not the CLIENT. Hence 

CLIENT DEVELOPER can focus on PRESENTATION of the 

CLIENT. As a result CLIENTS are THINNER 

6. EJB(S) are MANAGED by the CONTAINER , with container 

providing important services such as TRANSACTION 

MANAGEMENT , SECURITY , CONCURRENCY CONTROL

7. WHEN TO USE EJB 

a. – For the applications that MUST be SCALABLE 

b. – TRANSACTION MUST ENSURE DATA INTERGRITY

c. – The Application will have VARIETY of CLIENTS

8. EJB(S) DO NOT manage INBOUND or OUTBOUND DATA , the 

CONTAINER manages ALL CLIENT ACCESS

9. If WRITTEN using ONLY those services DEFINED by the 

SPECIFICATION , EJB(S) can be PORTED to other EJB 

CONTAINERS with MINIMAL EFFORT

10. EJB has few major releases , EJB 2.0 , EJB 2.1 and EJB 3.0

11. EJB 3.0 was completely targeted for EASE of DEVELOPMENT



LIYANA ARACHCHIGE RANIL

12. EJB 3.0 specification has THREE parts , ejb-core  , ejb-simplified , 

jpa

13. Overall EJB COMPONENT model ALLOWS the following HIGH 

LEVEL characteristic

a. A STATELESS SERVICE , including the ABILITY to act as 

a WEB SERVICE END POINT

b. A STATEFUL SERVICE

c. A service invoked ASYNCHRONOUSLY by a SEPARATE 

COMPONENT

d. An ENTITY OBJECT

SESSION BEANS – STATELESS/STATEFULL [EJB 3.0]

1. SESSION BEANS are EJB(S) that CONTAIN BUSINESS LOGIC

2. SESSION BEANS would contain BUSINESS LOGIC that is 

related to the IMPLEMENTATION of a WORKFLOW or 

PROCESS

3. SESSION BEANS can be considered as SERVER SIDE PROXIES

4. SESSION BEANS are NOT PERSISTANT

5. TWO MAJOR TYPE OF SESSION BEAN – STATELESS 

SESSION BEANS , STATEFUL SESSION BEANS

6. STATELESS SESSION BEANS do not maintain any INTERNAL 

CLIENT SPECIFIC state across SEPARATE CLIENT invocations

7. STATELESS SESSION BEAN does NOT MAINATIN a 

CONVERSATIONAL state with the CLIENT

8. ALL instances of STATELESS BEANS are EQUIVALENT

9. A STATELESS SESSION BEAN can IMPLEMENT a WEB 

SERVICE, Other types of EJB CAN NOT

10. Application SCALABILITY is IMPROVED GNIFICANTLY when using 

STATELESS SESSION beans



LIYANA ARACHCHIGE RANIL

11. A SMALL POOL of (relative to the SIZE of the number of 

CONCURRENT request) STATELESS SESSION BEANS can be used 

to service a SIGNIFICANTLY larger number of CONCURRENT 

REQUESTS

12. STATELSS SESSION BEANS register EJB TIME SERVICE to 

receive EVENT NOTIFICATIONS by adding @Timeout 

annotation

13. STATELESS SESSION BEAN life cycle

14.

15. STATELESS SESSION BEANS are NEVER PASSIVATED

16.

17. TIMER SERVICE can be USED by ALL TYPES OF EJB(S) 

EXCEPT STATEFUL SESSION BEANS



LIYANA ARACHCHIGE RANIL

18. STATEFUL ENTERPRISE BEANS has the ABILITY to 

MAINTAIN INTERNAL CONVERSATIONAL STATE across 

MULTIPLE INVOCATIONS from the SAME CLIENT

19. Applications that use STATEFUL SESSION BEANS are NOT  as 

scalable as EQUIVALENT application that uses STATELESS 

SESSION BEANS

20. STATEFUL BEANS can be ACTIVATED and PASSIVATED by the 

CONTAINER

21. STATEFUL SESSION BEANS can not be REGISTERED with EJB 

TIMER SERRVICE

22. STATEFULL SESSION BEANS life cycle

23.



LIYANA ARACHCHIGE RANIL

24.

25. Whenever the STATEFUL EJB is created the CONTAINER 

PERFORMS 

e. DEPENDENCY INJECTION

f. POST CONTRUCT CALL BACKS if ANY

26. EJB CONTAINER would INVOKE @PrePassivate method  if 

ANY BEFORE PASSIVATING STATEFUL BEAN

27.When EJB CONTAINER ACTIVATES A STATEFUL BEAN it would 

INVOKE @PostActivate method if ANY

28. At the END of the LIFE CYCLE , the CLIENT INVOKES a 

METHOD annotated with @Remove

29. And the EJB CONTAINER CALLS the METHOD annotated 

@PreDestroy if ANY

30. Your CODE controls the INVOCATION of ONLY ONE LIFE CYCLE 

method, the method annotated with @Remove 

31. STATEFUL SESSION BEANS are appropriate for

g. The BEANS state REPRESENTS the INTERACTION between 

the BEAN and a SPECIFIC client

h. The BEAN needs to host INFORMATION about the CLIENT 

ACROSS method INVOCATIONS

32. ALL SESSION BEANS require SESSION BEAN class

33. SESSION BEANS can implement MORE THAN ONE INTERFACES

34. TYPES of CLIENTS can be REMOTE , LOCAL or WEB SERVICE 



LIYANA ARACHCHIGE RANIL

35. REMOTE CLIENTS – runs on different JVM , can be web 

component , an application client or another EJB, location 

of the EJB is TRANSPARENT

36. LOCAL CLIENT – MUST run on the SAME JVM as the EJB ,can be 

a WEB COMPONENT or another EJB, the LOCATION of the EJB is 

not TRANSPARENT

37. The SAME business interface CAN NOT BE both LOCAL and 

REMOTE

38. DECIDING on LOCAL or REMOTE access

i. Tighter or Loose coupling (tightly coupled beans are 

good candidates for LOCAL access. They typically call each 

other often , this would enhance PERFORMANCE)

j. Type of Client – If an Application Client ,then Remote . If 

the clients are web components or other EJB, then type of 

access DEPENDS on HOW YOU DISTRIBUTE your 

COMPONENTS

k. Component Distribution – 

l. Performance – Network latency would degrade the 

Performance (Remote calls may be slower than the Local 

calls) while if the component are distributed , those can be 

deployed in different servers and improve overall 

performance

39. All EJBs that PERMIT REMOTE access MUST have a REMOTE 

business INTERFACE

40. The BUSINESS INTERFACE is LOCAL interface UNLESS it is 

annotated with @Remote

41. If the BEAN CLASS implements a SINGLE INTERFACE , the 

INTERFACE is ASSUMED to be the BUSINESS INTERFACE



LIYANA ARACHCHIGE RANIL

42. If the BEAN CLASS implements MORE THAN ONE interface , 

either the BUSINESS INTERFACE must be EXPLICITLY 

annotated either @Local , @ Remote or the BUSINESS 

INTERFACE must be SPECIFIED by DECORATING the BEAN 

CLASS with @Remote or @Local

43. java.io.Serializable , java.io.Externalizable , any interface 

DEFINED in java.exj package  are IGNORED in the above case

44.



LIYANA ARACHCHIGE RANIL

45.



LIYANA ARACHCHIGE RANIL

46.@postConstruct methods are invoked by the CONTAINER on 

NEWLY constructed bean instances AFTER all DEPENDENCY 

INJECTIONS has completed and BEFORE the FIRST BUSINESS 

METHOD is invoked

47.@PreDestroy methods are invoked AFTER any METHOD 

annotated @Remove has COMPLETED and BEFORE the 

CONTAINER REMOVES the EJB Instance

48.@PostActivate methods are invoked by the CONTAINER after 

the CONTAINER MOVES The BEAN from SECONDARY STORAGE to 

ACTIVE STATUS

49.@PrePassivate methods are INVOKED by the CONTAINER 

BEFORE the CONTAINER PASSIVATES the EJB

50. The SINGNATURE of a BUSINESS METHOD MUST conform to 

following RULES

m. METHOD name MUST not BEGIN with ejb to AVOID 

CONFLITS with callback methods defined by EJB 

architecture

n. The Access control modifier MUST be PUBLIC

o. If the BEAN allows remote access , the ARGUMENTS and 

RETURN types MUST be LEGAL types for JAVA RMI

p. If the BEAN class is capable of being a WEB SERVICE END 

POINT the methods exposed as WEB service METHODS 

must have arguments and return types compatible to JAXB

51.  STATEFULL SESSION BEANS have @Remove method 

declared usually. The container REMOVES the bean after 

@Remove method completes

MESSAGE DRIVEN BEANS (MDB) 



LIYANA ARACHCHIGE RANIL

1. MESSAGE DIRVEN BEANS (MDB) receive and process 

messages from a JMS destination

2. JMS Destination can be a QUEUE or TOPIC

3. JMS Specification defines a common way for JAVA programs to 

create , send , receive and read an ENTERPRISE MESSAGING 

SYSTEM’S messages

4. Enterprise Messaging Products are sometimes called 

Message Oriented Middleware (MOM)

5. JMS is a set of interfaces and associated semantics that define 

how a JMS client accesses the facilities for an ENTERPRISE 

MESSAGING PRODUCT

6. Messaging is peer-to-peer

7. JMS Provider is the ENTITY that implements JMS for a 

MESSAGING PRODUCT

8. A major goal of JMS is that CLIENTS have a CONSISTANCT API for 

creating and working with MESSAGES that is INDEPENDENT fof 

the JMS PROVIDER

9. Messaging products can be POINT-TO-POINT or PUBLISH-

SUBSCRIBE systems

10. POINT-TO-POINT = Built around the concept of MESSAGE 

QUEUE(S). Each message is addressed to a SPECIFIC QUEUE. 

Clients EXTRACT messages from the QUEUE(S) established to 

HOLD their MESSAGES (PQ, pointtopoint=queue)

11. PUBLISH and SUBSCRIBE (PUB/SUB) clients address 

messages to some NODE in a content hierarchy. PUBLISHERS 

and SUBSRIBERS are generally ANONYMOUSE

12. The system takes care of DISTRIBUTING the messages 

arriving from a NODE’(S) multiple PUBLISHERS to its MULTIPLE 

SUBSCRIBERS



LIYANA ARACHCHIGE RANIL

13. JMS does not provide

a. Load balancing / fault  tolerance

b. Error / Advisory notifications 

c. Administration of messaging products

d. Security – JMS does NOT specify an API for controlling 

PRIVACY and INTERGRITY. It is expected that many KMS 

providers will provide such features. It is also expected 

that configuration of these services will be handled by 

PROVIDER-SPECIFIC way

e. Wire protocol

f. Message type repository

14.MDB(S) provide ability to ASYNCHRONOUSLY process messages

15. EJB supports both SYNCHRONOUS and ASYNCHRONOUS 

message consumption. The synchronous one is via METHOD calls 

and ASYNCHRONOUS one using BEANS which is invoked when 

JMS client sends it a message (MDB)

16. JMS 1.1 introduced a unified interfaces to interact with the 

messages from both DOMAINS , point-to-point and 

publish/subscribe

17. PRIOR to JMS 1.1 , the there were TWO DIFFERENT sets of 

INTERFACES for both DOMAINS , namely , PUB/SUB and 

POINT-to-POINT

18. A JMS application has , 

a. JMS Client – Java language programs that sends and 

receives messages

b. Non-JMS Client – Clients that uses MESSAGING SYSTEMS 

NATIVE client API instead of JMS. If the application predated 

the availability of JMS it is likely that it will include both JMS 

and NON-JMS clients



LIYANA ARACHCHIGE RANIL

c. Messages – Each application defines set of messages that 

are used to communicate information between clients

d. JMS Provider – Messaging System that IMPLEMENTS JMS 

in addition to other functionality

e. Administered Objects – Administered objects are PRE-

CONFIGURED JMS objects created by an ADMINISTRATORY 

for use by clients. Administered objects are usually placed 

in JNDI namespace by ADMINISTRATOR

i. ConnectionFactory – Uses to create a Connection 

with the provider

ii. Destination – uses to specify the destination of 

messages

f.

g. Administered objects are placed in JNDI namespace by an 

Administrator

19. An application can COMBINE both styles of domain , “Point-to-

Point” , “Pub/Sub”

20.



LIYANA ARACHCHIGE RANIL

21. JMS DOES NOT provide features for controlling or configuring 

MESSAGE INTERGRITY or MESSAGE PRIVACY

22. JMS provides the JMSReplyTo message header field for 

specifying the Destination where a reply to a message should be 

sent

23. JMSCorrelationID header field of the REPLY can be used to 

REFERENCE the ORIGINAL REQUEST

24. JMS message consist of HEADER , PROPERTIES and BODY

25.Message Header Fields : JMSDestination [destination to 

which the message is sent] , JMSDeliveryMode [delivery mode 

specified when the message was sent],JMSMessageID[value 

that uniquely identifies each message sent by the 

provider],JMSTimestamp[time a message was handed off to a 

provider to be sent],JMSCorrelationID[link one message with 

another],JMSReplyTo[destination supplied by the CLIENT when 

a message is sent,destination where to reply should be 

sent],JMSRedelivered[it is likely , but not guaranteed that this 

message was delivered but not acknowledged in the 

past],JMSType,JMSExpiration,JMSPriority

26.



LIYANA ARACHCHIGE RANIL

27. JMS message body could be StreamMessage[Stream of JAVA 

primitive values] , MapMessage [set of Name-Value pairs], 

TextMessage , ObjectMessage[Contains serializable JAVA 

object ] , BytesMessage [Stream of Un interpreted bytes]

28. A JMS SESSION may optionally be TRANSACTED

29. Each TRANSACTIONAL SESSION supports SINGLE SERIES of 

TRANSACTIONS

30. Each TRANSACTION GROUPS a set of PRODUCED MESSAGES 

and a SET OF CONSUMED messages into an ATOMIC unit of 

work

31.When a TRANSACTION commits, its ATOMIC unit of INPUT is 

ACKNOWLEDGED and its ASSOCIATED ATOMIC UNIT of 

OUTPUT is SENT. If ROLLBACK is done ,its PRODUCED 

MESSAGES are DESTROYED and its CONSUMED messages are 

automatically RECOVERED 

32. Distributed Transactions are NOT required to be 

SUPPORTED by JMS , but if it does so then it MUST use JTA 

XAResource API

33. JMS defines that MESSAGES sent by a particular SESSION 

to a destination MUST BE RECEIVED in the order in which 

they were SENT

34. JMS does NOT define ORDER of MESSAGE RECEIPT ACROSS 

destinations , or across DESTINATION MESSAGES sent 

from MULTIPLE SESSIONS

35. If a SESSION is TRANSACTED , message 

ACKNOWLEDGEMENT is handled automatically by COMMIT 

and recovery is handled automatically  by ROLLBACK

36. If SESSION is NOT TRANSACTED , there are THREE 

ACKNOWLEDGEMENT options and RECOVERY is handled 

MANUALLY



LIYANA ARACHCHIGE RANIL

a. DUPS_OK_ACKNOWLEDGE

i. Session would LAZYLY ACKNOWLEDGE the delivery 

of messages. Would RESULT in delivery of 

DUPLICATE messages

b. AUTO_ACKNOWLEDGE

i. Session AUTOMATICALLY acknowledges a client’s 

receipt of a message when it has successfully 

returned from a call to RECEIVE

c. CLIENT_ACKNOWLEDGE

i. Client acknowledges a message by calling message’s 

acknowledge method

37. A client uses a MessageConsumer to receive messages 

from a Destination.

38. A MessageConsumenr is created by passing QUEUE or TOPIC 

to a SESSION’S createConsumer Method

39. A Consumer can be created with a MESSAGE SELECTOR. This 

allows the client to RESTRICT the messages delivered to the 

CONSUMER

40. A Client MAY either SYNCHRONOUSLY receive consumer’s 

messages or have the PROVIDER ASYNCHRONOUSLY deliver 

them as they arrive

41. SYNCHRONOUS MESSAGE DELIVERY : A client can request 

next message from a MESSAGE CONSUMER using one of its 

receive methods



LIYANA ARACHCHIGE RANIL

a.

42. ASYNCHRONOUS MESSAGE DELIVERY: A client can register 

an object that implements the JMS MessageListener interface 

with a MESSAGE CONSUMER. As messages arrive for the 

CONSUMER, the provider delivers them by CALLING the 

listeners onMessage() method

a.

43. There are TWO JMS delivery MODES

a. NON_PERSISTENT [at-most-once , messages can get 

lost / performance is high]

i. Lowes overhead delivery mode. Does not require 

that the message be logged to stable storage. A JMS 

provider failure can cause a NON_PERSISTENT 

message to be lost



LIYANA ARACHCHIGE RANIL

b. PERSISTENT [once –and-only-once , must not get lost , 

must not duplicate either / reliability is high]

i. Instructs the JMS provider to take EXTRA care to 

INSURE the message is not lost in transit due to a 

JMS provider failure

44. JMS supports following administered objects a 

multithreading access

a.

45.MDB(S) are probably the SIMPLEST type of EJB because there is 

only ONE METHOD [onMessage]

46.MDB(S) can be used to COMSUME MESSAGES from any 

CONNECTOR 1.5 RESOURCE ADAPTOR



LIYANA ARACHCHIGE RANIL

47.

48. MDB requirements

q. MDB(S) must be annotated with @MessageDriven , if 

there is no Deployment Descriptor

r. The class must be PUBLIC

s. The Class MUST not be ABSTRACT or FINAL

t. MUST contain a PUBLIC constructor with NO arguments

u. It MUST not DEFINE the finalize METHOD

v. It is recommended , but not REQUIRED that a MDB class 

implements the MESSAGE LISTENER INTERFACE for the 

type it supports (For JMS ,javax.jms.MessageListener)

49.MDB(S) do not have LOCAL or REMOTE interfaces

50.MDB can be injected with MessageDrivenContext , this is 

commonly used to call setRollbackOnly method to handle 

EXCEPTIONS for a bean that uses CONTAINER MANAGED 

TRANSACTIONS. In addition to that to acquire , 



LIYANA ARACHCHIGE RANIL

UserTransaction , TimerService , getCallerPrincipal , 

isCallerInRole are also available

51. onMessage is CALLED by the CONTAINER , NOT another 

CLIENT

52. By Using RESOURCE INJECTION and ANNOTATION ejb-

jar.xml is SKIPPED , but at some situations Application 

Server specific files may be needed to configure a MDB 

such as sun-ejb-jar.xml

53. CLIENTS DO NOT access MDB(S) through INTERFACES

54.MDB has ONLY a BEAN CLASS, NO INTERFACE DEFINED

55.MDB DOES NOT retain any DATA or CONVERSATIONAL 

STATE specific to CLIENT

56. ALL instances of MDB are EQUIVALENT

57. CONTAINER can POOL MDBs to allow for a STREAM of 

MESSAGES to be PROCESSED CONCURRENTLY

58. A single MDB can process MESSAGES from MULTIPLE 

clients

59.MDB(s) are RELATIVELY SHORT LIVED

60.MDB(S) can be TRANSACTION aware

61.MDB(S) are STATELESS

62. A message can be DELIVERED to a MDB within a SINGLE 

TRANSACTION CONTEXT, so all operations within the onMessage 

method are PART of the TRANSACTION

63. If Message Processing ROLLSBACK , MESSAGE WOULD BE 

REDELIVERED

64. SESSION BEANS allow you to SEND JMS messages and RECEIVE 

those SYSNCHRONOUSLY , but not ASYNCHRONOUSLY

65. In General JMS messages should not be SENT 

SYNCHRONOUSLY



LIYANA ARACHCHIGE RANIL

66. For MDBs , PostContruct , PreDestroy life cycle methods are 

supported

67. PostConstruct method is invoked before the first message 

listener method invocation on the bean

68. PreDestroy method is invoked at the time bean is removed or 

destroyed

69.MDB(S) message ACKNOWLEDGEMENT is automatically handled 

by the CONTAINER

70. PreDestroy call backs might be missed by the CONTAINER due 

to CONTAINER CRASHES etc.

71.

ENTITY CLASSES – EJB 3.0 / ENTITIY BEANS – EJB 2.1

1. EJB 3.0 ENTITY CLASSES replace ENTITY BEANS in EJB 2.1

2. ENTITY CLASS is a light weight persistence DOMAIN Object

3. ENTITY CLASSES must be annotated with @Entity or use XML 

descriptors



LIYANA ARACHCHIGE RANIL

4. ENTITY CLASSES must have a NO-ARGUMENT PUBLIC 

constructor

5. ENTITY CLASS must not be FINAL , no methods in class MUST 

be final

6. ENTITY CLASS must implement SERIALIZABLE interface if needs 

to be passed as a TRANSFER OBJECT to client side 

7. ENTITY CLASSES can be ABSTRACT and EXTEND from NON-

ENTITY 

8. ENTITY CLASSES support POLYMORPHISM , INHERITANCE

9. ENTITY becomes PERSISTANCE by means of ENTITY MANAGER

10. EVERY ENTITY MUST have a primary KEY

11. relationships between ENTITIES could be

w. One-to-One

x. One-to-Many

y. Many-to-One

z. Many-to-Many

12. Relationship may be Bi-Directional , or Uni-Directional

13. Bi-Directional , has both Owning and Inverse side , Uni-

Directional only Owning side

14. ENTITY MANAGER is ASSOCIATED with a PERSISTANCE 

CONTEXT

15. PERSISTANCE CONTEXT is a set of ENTITY INSTANCES in 

which for any persistence entity identity there is a UNIQUE 

ENTITY INSTANCE

16.WITHING the PERSISTANCE CONTEXT , entity instance LIFE 

CYCLE is managed

17. ENTITY MANAGE interface DEFINES the METHODS by which 

PERSISTANCE CONTEXT is INTERACTED



LIYANA ARACHCHIGE RANIL

18. The PERSIST , MERGE , REMOVE , and REFRESH methods 

MUST BE invoked WITHING a TRANSACTION CONTEXT when 

used with an ENTITY MANGER which is TRANSACTION 

SCOPED

19. FIND , GETEREFERENCE methods NO need TRANSACTION 

CONTEXT

20.

21. EJB 3.0 Entity Classes  CAN BE TESTED outside the 

CONTAINER



LIYANA ARACHCHIGE RANIL

22.

23. ENTITY MANAGER FACTORY can be OBTAINED ,

a. EntityManagerFactory emf = 

Persistance.createEntityManagerFactory(“Employee

Service”); 

24. CREATING an ENTITY MANAGER

a. EntityManager em = emf.createEntityManager();

25. PERSISTING ENTITIES

a. Employee emp = new Employee(158);

b. Em.persist(emp);

26. FIND and ENTITY

a. Employee emp = em.find(Employee.class , 158);

27. REMOVING an ENTITY

a. Employee emp = em.find(Employee.class,158);

b. Em.remove(emp);

28. UPDATING an ENTITY

a. Employee emp = em.find(Employee.class , 158);

b. Emp.setSalary(emp.getSalary() + 1000 );



LIYANA ARACHCHIGE RANIL

Entity Manager is not being invoked to do anything, but since 

Employee is a MANAGED entity, the changes must be saved 

automatically

29. It is ASSUMED that for PERSIST , REMOVE , MERGE , REFRESH 

are invoked in a TRANSACTION

30. PERSISTANCE UNIT is DEFINED in an XML configuration file 

named “persistence.xml” 

31. Each PERSISTANCE UNIT has a UNIQUE NAME

32. A single PERSISTANCE UNIT XML file may contain MORE 

THAN ONE PERSISTANCE UNIT CONFIGURATIONS

33.

34.  persistence.xml file MUST be inside META-INF

35. The transaction-type attribute is used to specify whether the 

ENTITY MANAGER provided by entity manager factory for the 

PERSISTANCE UNIT must be JTA ENTITY MANAGERS or 

RESOURCE LOCAL entity managers

36. The value of transaction-type could be JTA or 

RESOURCE_LOCAL

37. A transaction type JTA assumes that a JTA data source will 

be provided

38. A transaction type RESOURCE_LOCAL assumes that a NON-

JTA data source will be provided



LIYANA ARACHCHIGE RANIL

39. In a JAVA EE environment if the element is not specified the 

DEFAULT is JTA

40. In a Java SE environment if this element is not specified , a 

DEFAULT of RESOURCE_LOCAL will be assumed

41. Life cycle of a JPA class

42.

EJB 2.1 ENTITY BEANS

1. EJB 2.1 ENTITY BEANS are inherently COMPLEX

2. LOT OF INTERFACECS needed to be created / implemented

3. LOT of LIFE CYLCE related METHODS would appear in the 

CODE

4. Since EJB 2.1 ENTITY BEANS are distributed , remote objects 

PERISTANCE was introduced with a new problem and this cases 

PERFORMANCE issues

5. EJB 2.1 EJB OBJECT



LIYANA ARACHCHIGE RANIL

6.



LIYANA ARACHCHIGE RANIL

7.

8. Hello remote Interface

a.



LIYANA ARACHCHIGE RANIL

9. Hello remote home Interface (This interface help in creating EJB 

remote interface)

a.

10.Hello enterprise java beans implementation 



LIYANA ARACHCHIGE RANIL

a.



LIYANA ARACHCHIGE RANIL

11. ejb-jar.xml file which binds all these together

a.

12.Hello Client using Hello Home Interface to create Hello Interface 

which gives the facility to interact with HelloBean 

implementation



LIYANA ARACHCHIGE RANIL

a.

13. LocalHome  and LocalEJBObject is used to interact with EJB(S) 

within the same JVM

a.  

14. Hello Local Home



LIYANA ARACHCHIGE RANIL

a.

15. EJB 2.1 ENTITY beans are PERSISTAT ENTITIES

16. An ENTITY BEAN does not PERFORM complex logic or workflows

17. An ENTITY BEAN consists of a set of standard classes , REMOTE 

INTERFACE , REMOTE HOME INTERFACE , ENTITY BEAN itself, 

deployment descriptor, LOCAL INTERFACE , LOCAL HOME 

INTERFACE

18. ENTITY BEAN – REMOTE INTERFACE

a.

19. ENTITY BEAN – REMOTE HOME



LIYANA ARACHCHIGE RANIL

a.

20. ENTITY BEAN – IMPLEMENTATION



LIYANA ARACHCHIGE RANIL

a.



LIYANA ARACHCHIGE RANIL

21. ENTITY BEAN – DEPLOYMENT DESCRIPTOR



LIYANA ARACHCHIGE RANIL

a.



LIYANA ARACHCHIGE RANIL

22. ENTITY BEAN – LOCAL INTERFACE



LIYANA ARACHCHIGE RANIL

a.

23. ENTITY BEAN – LOCAL HOME INTERFACE

a.

24. ENTITY BEAN primary key MUST be SERIALIZABLE

25. ejbLoad() READS the DATA FROM persistence storage , 

ejbStore() PERSIST data to persistent storage

26. ejbLoad() , ejbStore() are invoked by the CONTAINER

27. CONTAINER may instantiates more than one instance of 

the SAME Entity Bean to serve more than one clients

28. To AVOID any data corruptions due to multiple ENTITY 

BEAN instances , container user ejbLoad() , ejbStore() call back 



LIYANA ARACHCHIGE RANIL

methods. At the end of TRANSACTIONS the Entity Beans will be 

synchronized with the data base

29. CONTAINER MAY POOL entity beans and ENTITY beans are 

RECYCLABLE (depends on the container POLICY)

30. ENTITY BEANS must implement ejbActivate() , 

ejbPassivate() container CALL BACKS

31.When an ENTITY BEAN is PASSIVATED , it MUST release it’s 

RESOURCES while it MUST WRITE the STATE to DATABASE



LIYANA ARACHCHIGE RANIL

32.

33. ENTITY BEAN can be PERSISTED in TWO ways ,



LIYANA ARACHCHIGE RANIL

a. BEAN MANAGED PERSISTANCE (The bean itself is 

responsible to manage the PERSISTANCE)

b. CONTAINER MANAGED PERSISTANCE (With container 

managed persistence no persistence logic is written by 

hand. Then container it self would generate those required 

code. Container does this by SUBCLASSING the entity bean 

)

34. ENTITY CONTEXT allows ENTITY BEAN To interact with the 

CONTAINER and it defined the ENVIRONMENT VARIABLES

35. finder METHODS are defined in REMOTE HOME and LOCA HOME 

BOTH (ejbFind()).

36. Only when BEAN MANAGED PERSISTANCE is used , you need to 

code FINDER METHODS explicitly. Or else COTNAINER managed 

PERSISTANCE is used those are created automatically

37. There must be at least one FINDER method in the HOME 

INTERFACE



LIYANA ARACHCHIGE RANIL

a.

38. ENTITY BEAN life CYCLE



LIYANA ARACHCHIGE RANIL

a.



LIYANA ARACHCHIGE RANIL

39. Container Managed Persistent (CMP) ENTITY BEAN SUPER 

CLASS

a.

40. CMP ENTITY BEANS have an ABSTRACT PERSISTANCE SCHEMA

41.

42. CMP ENTITY BEANS have a QUERY language known as EJB-QL



LIYANA ARACHCHIGE RANIL

43. ENTITY BEAN LIFE CYCLE – CMP



LIYANA ARACHCHIGE RANIL

a.



LIYANA ARACHCHIGE RANIL

44. CONTAINER MANAGED TRANSACTIONS = 

DECLARATIVE , BEAN MANAGED TRANSACTION = 

PROGRAMMATIC

45. The benefit of PROGRAMMATIC TRANSACTION is you have 

all the control over the code that you write

46. The benefit of DECLARATIVE TRANSACTIONS is that you do 

not need to do much coding , CONTAINER will take care of it

47. TRANSACTIONS in EJB 2.1 ENTITY BEANS



LIYANA ARACHCHIGE RANIL

a. When an ENTITY BEAN is invoked in a transaction it first 

call ejbLoad() to keep in sync with the DB

b. Then one or more BUSINESS METHODS are called

c. Then the TRANSACTION is COMMITED , then ejbStore() is 

invoked

d. The methods ejbLoad() , ejbStore() are invoked by the 

CONTAINER , not you

e. If we were to user Bean Managed Transaction we would 

need to write begin() , commit() methods inside the ENTITY 

BEAN. We could start the transaction in ejbLoad() and 

complete it in ejbStore(). But the problem is there is no 

guarantee about the time that these would be invoked

f. Hence Bean Managed Transaction is ILLEGAL for ENTITY 

BEANS (2.1)

48. EJB 2.1 ENTITY BEANS , MUST use CONTAINER MANAGED 

TRANSACTIONS (DECLARATIVE)

TRANSACTIONS 

1. TRANSACTIONS have ACID properties , ATOMICITY , 

CONSISTANCY , ISOLATION , DURABILITY

2. ATOMICITY – either commits or rolls back together. Works as 

one unit 

3. CONSISTANCY – If the system was in a consistent state before 

the transaction after the transaction is committed or rolled back 

it must also be in consistency

4. ISOLATION – Transactions do not step on one another

5. DURABILITY – Transactions once committed , must remain 

permanent 

6. TRANSACTION ISOLATION LEVELS



LIYANA ARACHCHIGE RANIL

a. READ UNCOMMITED – Transaction can read uncommitted 

data of other transactions

b. READ COMMITED – transaction can only read committed 

data by other transactions

c. REPEATABLE READ – transaction is guaranteed to get the 

same data for the same raw for multiple reads

d. SERIALIZABLE – Highest transaction isolation level , 

guarantees that the tables involved in this transaction will 

never be changed by other transactions

7. For DISTRIBUTED TRANSACTIONS , TWO PHASE COMMIT is used

8. TWO PHASE COMMIT 

a. – PHASE 1 –Each participating resource manages 

coordinates local operations and forces all log records out. 

If successful , response with “OK”, if not allows timeout or 

send “OOPS”

b. – PHASE 2 – If all participants responded “OK”, 

coordinator instruct all the participating resource manages 

to “COMMIT”. Participants COMMIT keeping LOG records. 

Or else coordinator instruct the participants to “ROLL 

BACK”



LIYANA ARACHCHIGE RANIL

9.

10. The XA protocol is the protocol that is used to talk to DIFFERENT 

TRANSACTION manages in case of TWO PHASE commit. This is 

developed by X/Open Group

11. A transaction may either be GLOBAL or LOCAL. A LOCAL 

transaction involves ONE resource while GLOCAL transactions 

involve MULTIPLE RESOURCES

12. Transaction Management support is provided in J2EE 

platform using JTA (Java Transaction API)

13. JTA defined application transaction server , interaction 

between application server , resource manager and transaction 

manager

14. JTA defines local JAVA interface BETWEEN a  transaction manager 

and the parties involved in the transaction system : the 

application , the resource manager , application server

15. A TRANSACTION MANGER provides services and 

management functions required to support TRANSACTION 

DEMARCATION , TRANSACTION RESOURCE MANAGEMENT , 

SYNCHRONIZATION , TRANSACTION CONTEXT PROPAGATION



LIYANA ARACHCHIGE RANIL

16. An APPLICATION SERVER provides infrastructure needed 

for the RUNTIME to support TRANSACTIONAL STATE 

MANAGEMENT. Such as EJB containers

17. A RESOURCE MANAGER provides the APPLICATION ACCESS 

to RESOURCE through the (RESOURCE ADAPTOR)

18. The RESOURCE MANGER participates in a DISTRIBUTED 

TRANSACTION by implementing a TRANSACTION RESOURCE 

INTERFACE used by the TRANSACTION MANGER. (Example 

resource manager is a Relational Database Systems)

19. Examples of RESOURCE ADAPTORS are JDBC drivers to 

connect to RELATIONAL DB , ODMG drivers to connect to Object 

Oriented Databases, JRFC to connect to SAP systems

20. A RESOURCE ADAPTOR is a library used by an APPLICATION 

SERVER or CLIENT to connect to a RESOURCE MANAGER

21.

22. Java Transaction Server (JTS) is the JAVA implementation of 

OMG Transaction Service on which JTA has been defined



LIYANA ARACHCHIGE RANIL

23. EJB Requires that EJB COTNAINER supports application-level 

transaction demarcation by implementing the 

javax.transaction.UserTransaction

24. One of the NEW features included in JDBC 2.0 is support for 

DISTRIBUTED TRANSACTION. Two new interfaces have been 

created for JDBC drivers to support Distributed transactions using 

JTA’s XAResource interface. The two new interfaces in JDBC 2.0 

are javax.sql.XAConnection , javax.sql.XADataSource

25. JTA can be used by JMS service provides to support DISTRIBUTED 

TRANSACTIONS

26. JMS provider that support XAResource interface is able to 

participate as a RESOURCE MANAGER in a DISTRIBUTED 

TRANSACTION.

27. JMS provider would implement 

javax.transaction.xa.XAResource , javax.jms.XAConnection , 

javax.jms.XASession

28. UserTransaction interface provides the application the ability 

to control transaction boundaries programmatically

29. EJB 2.1 TRANSACTIONS 

a. ENTITY BEANS can only use DECLARATIVE (CONTAINER 

MANAGED ) transactions

b. JMS message driven beans can have REQUIRED and 

NOTSUPPORTED transaction attributes

c. JMS – if container managed transaction is used JMS 

will read messages off from the destination in the same 

transaction as it performs the business logic. If something 

goes wrong transaction will be rolled back and message 

acknowledge will occur



LIYANA ARACHCHIGE RANIL

d. JMS – if BEAN managed transaction is used, the 

transaction will start and end after JMS messages is 

received to the bean. Deployment descriptor 

acknowledgement modes should be used to acknowledge 

the message

e. JMS – If no transaction is supported then , message 

acknowledgement happens at some point later after 

message is received by the bean

f. JMS Point to Point Model which uses QUEUE, the 

Reliability statement: A queue is typically created by an 

ADMINISTRATOR and last for long time. It is always 

available to HOLD messages SENT to it whether or not the 

CLIENT who CONSUMES messages is active or inactive. For 

this reason the client DOES NOT need to take any special 

precautions to insure that it DOSE NOT MISS messages

g. JMS Publish / Subscriber which users TOPIC, the 

Reliability statement: NON-DURALBLE subscriptions last for 

the lifetime of their subscriber object. This means a CLIENT 

will only see the messages PUBLISHED on a TOPIC while its 

SUBSRIBER is ACTIVE. If the SUBSCRIBER is not active it is 

MISSING messages published on the TOPIC

i. But at the cost of HIGHER overhead a 

SUBSCRIBER can be MADE DURABLE

h. EJB 2.1 TRANSACTION ATTRIBUTES – 

i. REQUIRED – always run in a transaction , if one 

exists it uses that , or else create new one

ii. REQUIRESNEW –starts a new one if there is no 

existing transaction. If there is one , then SUSPEND 

that transaction and create a new one and finish it 

before REVOKING the suspended one



LIYANA ARACHCHIGE RANIL

iii. SUPPORTES – If there is a transaction existing it 

runs with the existing transaction , if there is no 

transaction then it just runs 

iv. MANDATORY – Transaction must be existing , else 

exception is thrown

v. NOTSUPPORTED – If there is a transaction. It is 

SUSPENDED and the code will run without 

transaction. If there is no transaction then code just 

runs 

vi. NEVER – If there is a transaction, then exception is 

thrown. Else the code just runs

i. For PROGRAMMATIC TRANSACTION in EJB 2.1 , JTA must be 

used

EJB 3.0 TRANSACTIONS

1. There can be CONTAINER MANAGED , BEAN MANAGED or CLIENT 

CONTROLLED TRANSACTIONS

2. CONTAINER MANAGED transactions allow components to be 

automatically enlist in TRANSACTIONS. EJB container takes care 

of everything

3. In EJB 3.0 you can specify the transaction attributes either via 

ANNOTATION or DEPLOYMENT DESCRIPTOR. 

@TransactionManagement annotation can be used

4. If neither the bean provider nor the deployer specifies 

transaction management , then the default is assumed to be 

container managed



LIYANA ARACHCHIGE RANIL

5.

6. Use code to start and end transactions outside of BEAN code. It is 

still needed to specify the transaction that is used by the EJB in 

this case



LIYANA ARACHCHIGE RANIL

a.

7. BEAN MANAGED TRANSACTIONS



LIYANA ARACHCHIGE RANIL

a.

8. CONTAINER MANAGED TRANSACTIONS – TRANSACTION 

ATTRIBUTES. IN EJB 3.0 @TransactionAttribute can be used

a. Required – Bean will always have to run in a 

TRANSACTION. If there is no transaction then one is 

created. If one exist then that one is used

b. RequiresNew – Always new transaction is created. If one 

exists it would be blocked and new one is started. If no 

existing transaction one will be started



LIYANA ARACHCHIGE RANIL

c. Supports – If there is no transaction nothing is done , if 

there is one then still the method is executed without any 

issue

d. Mandatory – (Mandate a transaction which is running) If 

there is no transaction EXCEPTION is thrown. If there is a 

transaction then the execution happens in that transaction

e. NotSupported – Transactions are not supported, if one 

existing then it would be blocked until the execution of this 

method finishes

f. Never - If there is an existing transaction an EXCEPTION is 

thrown.

g.



LIYANA ARACHCHIGE RANIL

9. DOOMING a transaction means force a transaction to ABORT. 

For this use EJBContext’s  setRollbackOnly() method

10. STATELESS SESSION BEANS support all the transaction 

attributes

11. A method on a WEB SERVICE endpoint stateless bean CAN 

NOT support MANDATORY transaction attribute

12. By Implementing SESSIONSYNCHRONISATION interface 

STATEFUL sessions beans can find information about the 

transaction that is it participating

13. SessionSynchronization interface can only be use with 

STATEFULL SESSION beans when those beans use CONTAINER 

MANAGED transactions

14. Client TRANSATION makes no sense for MDBs since those are not 

directly invoked by a CLIENT. Hence SUPPORTS, REQUIRESNEW, 

MANDATORY, NEVER will have no meaning. Only REQUIRED and 

NOTSUPPORTED are applicable

15. BEAN MANAGED transaction gives a more control than 

CONTAINER MANAGED



LIYANA ARACHCHIGE RANIL

a.

16. For Programmatic TRANSACTION , you need to use 

UserTransaction interface in JTA

17. JPA supports both JTA and LOCAL TRANSACTIONS at the 

ENTITYMANAGERS level

18. There is no MECHANISM to specify the TRANSACTIONAL 

BEHAVIOR of the ENTITIES



LIYANA ARACHCHIGE RANIL

19.When PERISISTANT API is used within a EE/EJB container , it is 

REQUIRED to support both JTA transactions as well as LOCAL 

transactions

20. The JTA transaction always begins and end external to the 

JTA entity Manager

21. The entity manager therefore only participate in an ACTIVE 

JTA transaction

22. For programmatic transactions use UserTransaction 

interface

23.

24.When JPA is used in MANAGED environment such as inside a 

application server , for bean managed transactions use 

UserTransaction interface. This is assuming that that the 

managed environment supports JTA. If JPA is used stand alone 

without a managed environment , use EntityTransaction 

service to handle transactions

25. TRANSACTIONS and JAVA EE CONNECTOR

a. Java connector architecture defines standard CONTRACT 

between RESOURCE ADAPTORS and Application servers

b. This standard contract helps APPLICATION SERVERS to 

provider RUNTIME and INFRASTRUCTURE for transaction 

management of RA components

c. RA (Resource Adaptor) can support Local Transactions as 

well as Distributed Transactions



LIYANA ARACHCHIGE RANIL

d. If RA Supports LOCAL TRANSACTION then the client will 

have to acquire Common Client Interface (CCI) API object 

such as javax.resource.cci.LocalTransaction or an 

equivalent from the RA to demarcate the transaction

e. If RA supports Distributed Transaction the container will 

automatically enlist the client in the transaction context , if 

the client wants to work in a Distributed Transaction

f. Java EE connector architecture 1.5 supports the INFLOW of 

transactions from an EIS to the java EE environment

g. This will allow the Java EE application to participate in a 

Transaction initiated by EIS

26. TRANSACTION ISOLATION

a. ISOLATION is a guarantee that the concurrent users are 

isolated from one another

b. Choosing the correct level of ISOLATION is critical to 

robustness and scalability of the application

c. READ_UNCOMMITED : does not offer any isolation , 

uncommitted data is read. Provides highest performance

d. READ COMMITED : Only committed changes are read from 

the DB. This solves DIRTY READ problems

e. REPEATABLE READ : solves dirty reads as well as 

unrepeatable read issue

f. SERIALIZABLE : solves previous problems as well as 

PHANTOMS



LIYANA ARACHCHIGE RANIL

27.

SECURITY

1. security comes at a price , such as INCREASED COST , 

COMPLEXITY ,REDUCED PERFORMACE , MAINTAINABILITY 

,FUNCTIONALITY etc

2. WEB APPLICATION security is covered by Java Servlet 

Specification

3. Don’t try to roll your own security frameworks, algorithms etc. 

There are enough out there and must be able to use those

4. The general security concepts used by JAVA EE for both 

SERVLETS and EJB are very similar

5. AUTHENTICATION in WEB APPLICATIONS , there are few 

mechanisms supported 

a. HTTP BASIC – username and password is requested via 

system generated window. The values are passed to server 

as base 64 encoded values

b. DIGEST AUTHENTICATION – username and password in 

transmitted in encrypted form. But this is not widely used



LIYANA ARACHCHIGE RANIL

c. FORM AUTHENTICATION – username and password is 

gathered via custom build forms and value are passed as 

plain text

d. CLIENT CERT – using PKI x.509 certificates

6. Authorization for a JAVA EE WEB application could be done in two 

ways

a. Declarative Security – Servlet container checks access to 

WEB RESOURCES based on the access rules in 

DEPLOYMENT DESCRITOR

b. Programmatic Security –The Servlet performs its own 

checks based on internal state, hard coded access rules 

and authentication information provided by the container

7. CONFIDENTIALITY and INTERGRITY protection for WEB 

APPLICATIONS is based entirely on SECURE TRANSPORT which 

means HTTPS

8.

9. user-data-constraint contains transport-guarantee element 

that requires confidentiality protection from the TRANSPORT 

LAYER. Other values for the transport-guarantee are 

“INTEGRAL”[intergrity] and “NONE”. CONFIDENTIAL implies 

INTEGRAL automatically since CONFIDENTIAL ones are protected 

against modifications



LIYANA ARACHCHIGE RANIL

10. The confidentiality and integrity protections for WEB 

APPLICATIONS are relatively COARSEGRAINED. There is no way 

for the DEPLOYMENT DESCRIPTOR to express requirement on the 

CRYPTOGRAPHIC STRENGTH of the protection through the 

CHOICE of SSL/TLS cipher suite

11. There are two security measures that CLIENTS must pass 

when you add security to an EJB system, AUTHENTICATION and 

AUTHORIZATION

12. AUTHENTICATION must be performed before any EJB 

method is called. AUTHORIZATION occurs at the beginning of 

each EJB method call

13. AUTHENTICATION logic can be called using JAVA 

AUTHENTICATION and AUTHORIZATION SERVICE  (JAAS)

14. The system property java.security.auth.login.config is used 

to reference the resource containing the configuration 

information in JAAS.

a. Java –Djava.security.auth.login.config=client.config

15. You will also NEED to SPECIFY SECURITY PERMISSION in 

order to execute the code (LoginContext lctx = new 

LoginContext(“helloclient”,new CallbackHandler)).

a. Java –Djava.security.policy = client.policy

b. The policies needed are 

i. Permission javax,security.auth.AuthPermission 

createLoginContext.SecurityExampleClient*;

ii. Pemission javax.security.auth.AuthPermission 

“modifyPrivateCredentials”

16. AUTHORIZATION in EJB, after the client has been 

AUTHENTICATED, it must pass AUTHORIZATION test to call 

method on your bean. EJB Container ENFORCES authorization by 



LIYANA ARACHCHIGE RANIL

DEFINING SECURITY POLICIES for your BEAN. There are TWO 

ways

a. With PROGRAMMATIC AUTHORIZATION, you hard code 

security checks into your bean code

b. With DECLARATIVE AUTHORIZATION , the CONTAINER 

performs all AUTHORIZATION checks for you

17.

18. All security checks are made possible due to SECURITY 

CONTEXT. 

19. SECURITY CONTEXT encapsulate the CURRENT CALLERS 

security STATE

20. CONTAINER uses SECURITY CONTEXT behind the scene

21. You can control the way that SECURITY INFORMATION is 

PROPAGATED via ANNOTATIONS or in your DEPLOYMENT 

DESCRIPTOR

22. If there is no EXPLICIT specification , either by DESCRIPTOR 

or ANNOTATION the caller PRINCIPLE is PROPAGATED



LIYANA ARACHCHIGE RANIL

23.

EJB TIMER SERVICE

1. EJB 2.1 introduced support for SCHEDULING through the 

CONTAINER-MANAGED EJB TIMER SERVICE

2. Enterprise BEANS interested in receiving TIMER 

NOTIFICATIONS will REGISTER themselves with the TIMER 

SERVICE

3. STATELESS SESSION BEANS , ENTITY BEANS , MESSAGE 

DRIVEN BEANS can receive TIMED notifications from the 

CONTAINRE

4. STATEFUL SESSION BEANS  ,  JAVA PERSISTANT ENTITIES 

DO NOT SUPPORT TIMERS

5.

6. TimerService instane can be accessed through EJBContext



LIYANA ARACHCHIGE RANIL

7.

8. Since EJB class does not allow static variables a TRUE SINGLETON 

can not be written. But as workarounds LIMIT THE POOL SIZE , 

USE RMI-IIOP and JNDI

9. WHEN TO USE MESSAGING versus RMI-IIOP

a. Database Performance – can process messages at OFF 

PEAK db load hours

b. Quick Response – Client may not want to block , ASY 

messaging

c. Smoother Load Balancing – With session and entity 

beans , load balancing algorithms make educated guesses 

about which server is the least loaded,with messaging the 

server that is the least loaded will ASK for a message

d. Request Prioritization – Asynchronous servers can 

QUEUE , PRIORITIZE and process messages in a different 

order that that in which they arrived into the system

e. Rapid integration of disparate systems – Many legacy 

systems are based on Message Oriented middleware and 

can easily interact with JAVA EE system through 

MESSAGING

f. Loosely Coupled Systems – Messaging enable loosely 

coupled systems

g. Geographically Disperse Systems – Messaging is very 

useful when you have applications communicating over the 

Internet or a wide area network



LIYANA ARACHCHIGE RANIL

h. Reliability – Messaging can be used even if the server is 

down

i. Many to Many communication – Messaging is 

appropriate since it enables many producers and many 

consumers 

j. When You are not sure if the operation succeeds – 

RMI-IIOP can throw Exceptions , but MDB(S) can not

k. When a return result is needed – RMI – IIOP systems 

can return a results immediately

l. When you need an operation to be part of larger 

transaction – RMI-IIOP

m. When you need to propagate client’s security 

identity to the server – RMI-IIOP

n. When you are concerned about REQUEST 

PERFORMANCE – Messaging is inherently slower since 

there is a middle man

EJB and INTEGRATION

1. There are THREE ways to integrate EJB applications

a. JMS and JMS based Message Driven Beans

b. Java Web Services

c. Java EE Connector Architecture

2. RESOUCE ADAPTORS (RA) when deployed in a MANAGED 

environment such as an APPLICATION SERVER , the RA accepts 

REQUESTS from various JAVA EE Components, such as SERVLETS 

, JSPs , EJBs and translate those REQUESTS to EIS-SPECIFIC calls 

and sends those REQUESTS to EIS. The response that is received 

from EIS is forwarded to the client JAVA EE component



LIYANA ARACHCHIGE RANIL

3. Application Components thus interact with the RA through its 

CLIENT CONTRACT

4. RA can support CLIENT CONTRACT using Common Client 

Interfaces (CCI) or EIS Specific client interfaces

5. RA can also work in a NON MANAGED environment, Ex- using 

JDBC driver in a non managed environment

6.

7. RA has contracts with Application Server

a. Connection Management Contract – enables 

application components to connect to the EIS so that 

application server can pool these connections

b. Transaction Management Contract – allows 

transactional access to the EIS from your application 

component

c. Security Contract – enable secure access to the EIS from 

the application component

d. Lifecycle management contract(1.5) – allows the 

application server to manage the lifecycle functions

e. Work management contract(1.5) – RA can submit work 

it needs to perform to the application server



LIYANA ARACHCHIGE RANIL

f. Transaction inflow contract (1.5) – Allows RA to 

PROPOGATE the transaction context imported from the EIS 

to the Application Server. This contract supplements 

TRANSACTION MANAGEMENT CONTRACT

g. Message inflow contract (1.5) – Allows RA to 

ASYNCHRONOUSLY deliver messages to message 

ENDPOINTS residing in the APPLICATION SERVER

8.

9.

10. JCA has different contracts between different participants

11. Application Server and Application Component , it has 

Container-Component Contract (this is Not by JCA )

12. Application Server and Resource Adaptor itself has a System 

Contract

13. System Contract has standard SET of system level contracts 

(Explained above)

14. The RA and Application Server collaborate to provide the 

underlying mechanisms , such as TRANSACTIONS , SECURITY 



LIYANA ARACHCHIGE RANIL

,CONNECTION POOLING ,and to DISPATCH to application 

components

15. The Client API used by APPLICATION COMPONENTS for 

accessing EIS could be CCI (Common Client Interface) or A Client 

API specific to the type of the RESOURCE ADAPTOR and its 

underlying EIS

16. The CONNECTOR ARCHITECURE requires that the 

connector architecture compliant RESOURCE ADAPTOR and 

APPLICATION SERVER must support SYSTEM CONTRACT

17. The Connector Architecture RECOMMENDS , though it is 

NOT MANDATED , that a RESOURCE ADAPTOR supports Common 

Client Interface (CCI) as CLIENT API

18. MANAGED clients as well as NON-MANAGED CLIENTS 

(Applets , Java applications) can use JCA to connect to EIS

19. Application container and RA has a SECURITY contract which 

does not depend on specific security technology implementation. 

The security can be enabled by enforcing Authentication and 

Authorization when connections are made to the EIS via RA

20. There are two ways , Application (From the Component 

CODE)can specify security details or it could be delegated to the 

Application Container (Ex: Deployer sets up Username and 

Password to login to EIS)to do the security authentication 

again EIS

21. The above two methods are also know as CONTAINER 

MANAGED SIGN ON and APPLICATION MANAGED SIGN ON

22. AUTHENTICATION MECHANISM : Application server and EIS 

collaboratively ensure that resource PRINCIPALS are properly 

AUTHENTICATED when the PRINCIPLE connects to EIS

23. Commonly supported AUTHENTICATION mechanisms in 

CONNECTOR ARCHITECTURE are BasicPassword,Kerbv5



LIYANA ARACHCHIGE RANIL

24. AUTHORIZATION MECHANISM : Authorization checking to 

ensure that the principle has access to EIS resource can be 

applied at EIS or at the APPLICATION SERVER

25. SECURE ASSOCIATION : The communication between the 

Application Server and EIS is protected. The RA can use any 

SECURITY MECHANISM to establish the SECURE ASSOCIATION 

(GSS API is an EXAMPLE)

26. The connector architecture requires that the application 

server and the resource adaptor MUST support JAAS Subject 

class as part of its security contract.

27. However it recommends but does not mandate JAAS 

pluggable authentication modules

28. The connector architecture does not require support for the 

AUTHORIZATION portion of the JAAS framework

29. The resource adaptor can use MESSAGE INFLOW contract 

to call a MDB 

30.

WHEN TO USE JMS / WEB SERVICE / RA

1. JMS



LIYANA ARACHCHIGE RANIL

a. Application wants to Integrate with your EJB application 

in ASYNCRONOUS yet reliable manner

b.  Integrating Non REAL time applications –processing 

INVENTORY , SHIPPPING or COMMUNICATION with 

suppliers

c. Need RELIABILITY and TRANSACTION support 

2. JAVA EE CONNECTORS

a. Want to integrate with back end EIS application without 

MODIFYING them

b. Quality of service is a PREREQUSITE for Integration – 

Transactional and SECURE , POOL outbound connections 

, application server needs to consume messages from 

EIS

c. Integrating with a widely used EIS

3. WEB SERVICE

a.  Need to QUICKLY integrate application end points

b. Target application for integration exist on DISPARATE 

PLATFORM

c. Target application endpoints are deployed BEHIND the 

BMZ , needing to go through FIREWALL

EJB 3.0 vs EJB 2.1

1. The number of classes needed in EJB 3.0 is very much less than 

the number of classes needed in EJB 2.1. Ex, if you need to 

create Address , Customer and Subscription beans ,

a. EJB2.1

i. AddressBean

ii. LocalAddress

iii. LocalAddressHome 



LIYANA ARACHCHIGE RANIL

iv. CustomerBean

v. LocalCustomer

vi. LocalCustomerHome

vii. SubscriptionBean

viii. LocalSubscription

ix. LocalSubscriptionHome

b. EJB 3.0

i. Address

ii. Customer

iii. Subscripton

2. The class Definition are simpler in EJB 3.0 than it is in EJB 2.1. An 

Entity in EJB 3.0 is a Plain Old Java Object (POJO), no 

BOLIERPLATE code is required

a. Address.java (EJB 3.0)

@Entity

public class Address implements java.io.Serializable{

public Address(){}

} 

b. AddressBean.java / Container Managed Persistence (EJB 

2.1)

public abstract class AddressBean implements EntityBean{

public void setEntityContext(EntityContext ctx){

}

public void unsetEntityContext(){

}

public void ejbRemove(){}

public void ejbLoad(){}

public void ejbStore(){}

public void  ejbPassivate(){}

public void ejbActivate(){}  

}



LIYANA ARACHCHIGE RANIL

3. EJB 3.0 relies on ANNOTATIONS and that minimizes what needs 

to be specified

4. EJB 3.0 default values make things easier

5. Persistent FIELD declaration in EJB 3.0 is easier than EJB 2.1

a. AddressBean.java (EJB 2.1)

public abstract String getAddressID();

public abstract void serAddressID(String id);

//XML deployment descriptor

<ejb-jar>

<display-name>Ejb1</display-name>

<enterprise-bean>

<entity>

<ejb-name>AddressBean</ejb-name>

<cmp-field>

<field-name>addressID</fied-

name>

</cmp-field>

</entity>

</enterprise-bean>

</ejb-jar>

b. Address.java (EJB 3.0)

private String addressed;

public Address(String id){

setAddressID(id);

setStreet(street);

}

@column(name=”addressID”)

public String getAddressID(){



LIYANA ARACHCHIGE RANIL

}

//No XML Descriptor Needed

6. Specifying ENTITY IDENTITY in EJB 3.0 is SIMPLER than in EJB 2.1

a. XML Descriptor Needed (EJB 2.1)

<ejb-jar>

<display-name>Ejb1</display-name>

<enterprise-bean>

<entity>

<ejb-name>AddressBean</ejb-name>

<cmp-field>

<field-name>addressID</fied-

name>

</cmp-field>

<prim-key-

class>java.lang.String</prim-key-

class>

<primarykey-

field>addressID</primarykey-field>

</entity>

</enterprise-bean>

</ejb-jar>

b. Address.java (Can specify composite keys using @IdClass , 

@EmbeddedId) – EJB 3.0

@id

public String getAddressID(){

return addressed;

} 

public void setAddressID(String id){

This.addressID = id;

}



LIYANA ARACHCHIGE RANIL

7. Relationship mapping in EJB 3.0 is very much easier than that in 

EJB 2.1

EJB 2.1

public abstract class CustomerBean implements EntityBean{

public abstract Collection getAddresses();

public abstract void setAddresses(Collection addresses);

public abstract Collection getSubscriptions();

public abstract void setSubscriptions(Collection subscription);

}

//XML Descriptor



LIYANA ARACHCHIGE RANIL

EJB 3.0

@Entity

Public class Customer implements java.io.Serializable{

@OneToMany(cascade=CascadeType.ALL,fetch=FetchType.EAGER)

public Collection <Address> getAddresses(){

return addresses;

}

@ManyToMany(fetch=FetchType.EAGER)

@JoingTable(name=”CUSTOMERBEANSUBSCRIPTIONBEAN”

joinColumns=@JoinColumn(name=”CUSTOMERBEAN_CUSTOME

RID96”,referencedColumnName=”customerId”),

inverserJoinColumns@JoinColumn(name=”SUBSCRIPTIONBEAN_

TITLE”,referencedColumnName=”TITLE”))

public Collection<Subscription> getSubscriptions(){

return subsciptions;

}

}

---ENTITY CLASS

@Entity

Public class Subscription implements java.io.Serializable{

@ManyToMany(mappedBy=”subscription”)

Public Collection<Customer> getCustomer(){

return custimers;

}

}

8. EJB 3.0 supports INHERITANCE and POLYMORPHISM which EJB 2.1 

does not support that. You can map hierarchy of entities , where 

entity subclasses another , to a relational database structure, 

and submit QUERIES against the base class. Queries are treated 

polymorphically against entire class hierarchy



LIYANA ARACHCHIGE RANIL

9. In EJB 3.0 Entities can INHERIT from other ENTITIES and from 

NON-ENTITIES

10. Operations on ENTITIES in EJB 3.0 is simpler than that of EJB 2.1. 

Entity operations are performed directly on the entity itself in EJB 

3.0. in EJB2.1 JNDI was involved heavily

11. In EJB 3.0 , DEPENDENCIES can be INJECTED unlike in EJB 2.1. In 

EJB 2.1 for that JNDI was used

12. In EJB 3.0 TRANSACTION related specification are simplified 

than in EJB 2.1. EJB 2.1 needed XML descriptors while EJB 3.0 

uses simplified ANNOTATIONS

13. Support for QUERIES has been significantly ENHANCED in 

EJB 3.0 , than EJB 2.1

14. Testing entities OUTSIDE the CONTAINER in EJB 3.0 is easier, EJB 

2.1 did not allow this possibility due to HOME and remote 

interfaces


