
LIYANA ARACHCHIGE RANIL

SHORTNOTES / JSF (JAVA SERVER FACES)

1. JSF is a user interface (UI) framework for JAVA web applications

2. It is designed significantly ease the burden of WRITING and

MAINTAINING applications that run on a JAVA application server

and render their UI back to the target client

3. JSF makes it easy , to construct UI from a set of REUSABLE UI

COMPONENTS, simplifies MIGRATION of APPLICATION data from

to UI , help manage UI STATE across server requests , allow

CUSTOM BUILD COMPONENTS

4. JSF designed to be TOOLED , but also EXPOSED framework

related API for “systems programmers”

5. JSF core architecture is designed to be INDEPENDET of

PROTOCOL and MARKUP

6. JSF tackles,

a. Maintaining UI state across requests

b. Supports in ENCAPSULATING difference in MARKUP across

different BROWSERS

c. Supports Multipage Form Processing

d. Provides strongly types EVENT MODEL

e. Validate REQUEST data

f. Enable TYPE CONVERSIONS

g. Handle PAGE NAVIGATIONS

h. Handle ERRORS and EXCEPTIONS

7. Three different type of request ,

a. Non faces request generates Faces Response

b. Faces Request generate Faces Response

c. Faces Request generate Non Faces response

8. Life cycle of a faces re quest

a. Restore View

LIYANA ARACHCHIGE RANIL

b. Apply Request

c. Perform Validations

d. Update Model Values

e. Invoke Application

f. Render Response

9. JSF is fully INTERNATIONALIZED (I18N)

10. JSF state manages happens either at CLIENT or at the

SERVER

11. JSF managed beans can have life cycle methods annotated

with @PostConstruct , @PreDestroy

12. The methods annotated with above annotations MUST

have ,

a. No Arguments

b. Return type MUST be VOID

c. Method must not declare a CHECKED EXCEPTION to be

throws

d. Method may be public , protected , private , default

13. Facelet is a REPLACEMENT for JSP in JSF

14. Facelet was designed with the JSF model in mind

15. Facelets was the FIST NON-JSP view declaring language

designed for JSF

16. Facelets do not need to worry about BACKWARD

compatibility with JSP

17. JSP did not support PAGE TEMPLATING for JSF , but

FACELETS do

18. Facelets are FASTER than JSP

19. Facelets for JSF 2.0 is written in XHTML pages

20. Facelets were used in even JSF 1.x as an alternative to JSP

as a DISPLAY TECHNOLOGY and configuration a JSF 1.2

LIYANA ARACHCHIGE RANIL

application for FACELET is bit different than configuring JSF 2.0

application for FACELETS

21. JSF 2.0 added FACELET as the default VDL support for the

specification while in JSF 1.2 did not

22. In JSF all these display technologies (JSP , Facelet , XUL)

are know as VDL (View Description Language)

23. FACELETS is an OPEN SOURCE WEB TEMPLATE SYSTEM

under APACHE LICENSE

24. FACELETS , improving JSF by dumping JSP

25. JSF 2.0 is for JEE 6 while JSF 1.2 is for JEE5

26. It is Perfectly legal to have a hybrid solution along with JSP

and JSF (1.2)

27. In JSF 1.2 , two JSP tag libraries are available for expressing

UI components

28. JSF is also based on MVC architecture as well, it provides

clear separation

29. typical development steps of a simple JSF 1.2 application

a. Configure the FacesServlet in web.xml

b. Develop JSF pages using VDL JSP

c. Use two major JSP tag libraries h , f

d. Write the JSF page using JSP tags

e. Create faces-config.xml file and configure Application

specific message bundles , Navigation rules and Backing

bean (Managed Beans) declarations

f. Wire any backing bean properties to components using EL

g. Deploy the application

30. JSF has two types of expressions , Value Expressions and

Method Expressions

31. Value Expression = #{UserNumberBean.maximum} ,

Method Expression = #{UserNumberBean.runTestMethod}

LIYANA ARACHCHIGE RANIL

32. JSF 1.2 does not support AJAX out of the box. Either you

have to write JAVASCRIPT for that or use another third party

library to add AJAX support. JSF 2.0 has a built in support using

h:ajax tag

