
LIYANA ARACHCHIGE RANIL

JAVA PERSISTANCE API / SHORT NOTES

1. The JAVA platform is well supported for MANAGING PERSISTANCE

to RELATIONAL DATABASES

2. JDBS is an abstraction over proprietary client Interface to the

proprietary RELATIONAL DATABASE

3. Enterprise JAVA Beans – Entity Beans were so complex

4. JDO – JAVA DATA OBJECTS , is another PERSISTANCE

SPECIFICATION effort in JAVA

5. JDO was not so popular and only handful of people started

supporting it

6. The science of BRIDGING the gap between the object model and

the relational model is known as OBJECT-RELATIONAL MAPPING.

Often referred to as O-R mapping

7. The difference between the Object Model and the RELATIONAL

model is always knows as IMPEDENCE MISMATCH

8. The JAVA PERSISTANCE API is a LIGHT WEIGHT , POJO-BASED

framework for JAVA persistence

9. The JPA persistence is , NON-INTRUSIVE (persistence objects are

no aware of the persistence mechanism) , Provides OBJECT

QUERIES [EJB-QL], having MOBILE ENTITIES [persistent POJOS

can be moved from one layer to another , one JVM to another

easily using the DETACHMENT model provided], SIMPLE IN

CONFIGURATION , TESTABLE

10. Characteristics of objects which have been transformed in to

ENTITIES ,

a. PERSISTABILITY – entities are persistable , means that they

can be made PERSISTANT which means their STATE can be

REPRESENTED in a DATA STORE and can be ACCESSED at

a later time

LIYANA ARACHCHIGE RANIL

b. IDENTITY – Entities have an Identity, both in the OBJECT

state and while in the DATA BASE as well

c. TRANSACTIONALITY –Entities created , updated , deleted

generally in a TRANSACTION

d. GRANULARITY – Entities are fine-grained objects that have

a set of AGGREGATED state that is normally stored in one

place such as a ROW in a TABLE

11. Entity META DATA

a. With entities there is some META-DATA at some point

b. Entity META-DATA can be either ANNOTAION or XML

12. CONFIGURATION BY EXCEPTION – means that the

persistence engine defined defaults that apply to the majority of

the applications

13. Simple Entity

LIYANA ARACHCHIGE RANIL

14. When ANNOTATIONS are placed either those can be placed

at FIELD or PROPERTY level. That means user can select to

ANNOTATE declared FIELD or GETTER METHOD

15. Users can select any of the above , but should adhere to the

once that is used in one ENTITY

16. EntityManager interface is used for almost all the

PERSISTANT operations

LIYANA ARACHCHIGE RANIL

17. The set of MANAGED entity instances within an ENTITY

MANAGER at any given time is called its PERSISTANCE CONTEXT

18. Only one JAVA INSTANCE with the same PERSISTANCE

INDENTITY may exist in a PERSISTANCE CONTEXT as any time

19. It is the PROVIDER that supplies the BACKING

INPLEMENTATION engine for the ENTIRE JAVA PERSISTANCE API

20. All the ENTITY MANAGES come from FACTORIES of

ENTITYMANGERFACTORY. The configuration for an entity manger

is bound to the EntityMangerFactory that CREATED it. But it is

defined SEPARATELY as a PERSISTANCE UNIT

21. PERSITECE UNIT – Dictates either implicit or explicit the

SETTINGS and ENTITY CALSSES used by all ENTITY MANGERS

obtained from the UNIQUE ENTITY MANGER FACTORY instance

BOUND to that PERSISTANCE UNIT

LIYANA ARACHCHIGE RANIL

22.

23. An ENTITY MANAGER is always obtained from an ENTITY

MANGER FACTORY

24. Creating an ENTITY MANGER FACTORY in J2SE environment

LIYANA ARACHCHIGE RANIL

a. EntityMangerFactroy emf =

Persistance.createEntityMangerFactory(“EmployeeService

”);

25. Obtaining an Entity Manager

a. EntityManger em = emf.createEntityManger();

26. Persisting an Entity

a. Employee emp = new Employee(158);

b. Em.persist(emp);

27. Finding an Entity

a. Employee emp = em.find(Employee.class,158)

28. Removing an Entity

29. In order to REMOVE and entity , it must be MANAGED

a. Employee emp = em.find(Emplyee.class , 158)

b. em.remove(emp)

30. Updating an Entity

a. Employee emp = em.find(Employee.class,158);

b. emp.setSalary(emp.getSalary() + 1000)

31. While updating no ENTITY MANAGER is invoked, For this

the ENTITY must be a MANAGED one at this time

32. Except FIND , all other MUST BE INVOKED in a

TRANSACTION

33. In case of TRANSACTIONS , the environment in which

operations are performed is important , it could be an

APPLICATION SERVER or STANDALONG APPLICATION

34. When RUNNING inside a JAVA EE CONTATINER , standard

JTA would be in use

35. Transaction Service that should be used in JAVA SE

environment is EntityTransaction service

36. In JAVA SE environment

a. em.getTransaction().begin()

LIYANA ARACHCHIGE RANIL

b. createEmployee(158,”John Doe”,45000);

c. em.getTransaction().commit()

37.

38. Creating Query

a. Query query = em.createQuery(“SELECT e FROM

Employee e”);

b. Collection emps = query.getResultList();

39. PERSISTANCE UNIT – The configuration that describes the

persistence unit is in XML file named “PERSISTANCE.XML”

40. A single persistence.xml file may contain many

PERSISTENCE UNIT configurations

41.

42. A persistence archive is a SIMPLE JAR file containing

PERSISTANCE.XML in META-INF folder

43. DEPENDENCY MANAGEMENT can be done through

Dependency Lookup and Dependency Injection.

LIYANA ARACHCHIGE RANIL

44. Dependency Look up is traditional from of Dependency

management in JEE , where application code is responsible for

using JNDI to look up named references

45. The process of automatically looking up a resource and

setting it into the class is called DEPENDENCY INJECTION

46. The server is said to inject the resolved dependency in to the

class and this is known as DEPENDENCY INJECTION

47. There are Few FORMS of DEPENDENCY INJECTION , FIELD

INJECTION and SETTER INJECTION

48. Referencing a PERSISTENCE CONTEXT

a.

49. Referencing a PERSISTENCE UNIT

LIYANA ARACHCHIGE RANIL

a.

50. REFERENCING AN EJB

a.

51. Referencing Server RESOURCE

LIYANA ARACHCHIGE RANIL

a.

52. RESOURCE LOCAL transactions are ALWAYS demarcated by

the APPLICATION

53. CONTAINER MANAGED transactions may EITHER be

demarcated AUTOMATICALLY by the CONTAINER or by using JTA

interface that support APPLICATION CONTROLLED demarcation

54. EJB may use wither CONTAINER MANAGED or BEAN

MANAGED TRANSACTION

55. SERVLETS are limited to somewhat poorly named BEAN

MANAGED TRANSACTIONS

56. The DEFAULT transaction management STYLE for EJB is

CONTAINER MANAGED TRANSACTIONS

57. A Message Driven Bean fully support Injecting Entity

Manager and can leverage CONTAINER MANAGED transactions

as well

58. Adding the STATELESS SESSION beans as components to

MANAGE PERSISTANCE operations is the PREFERRED strategy for

JAVA EE APPLICATIONS

LIYANA ARACHCHIGE RANIL

59.

60. STATEFULL SESSION BEANS are also well suited to

MANAGING PERSISTANCE OPEATAIONS within an APPLICATION

COMPONENT MODEL

61. The ability to STORE the STATE on the SESSION BEAN

allows creating QUERY criteria or other CONVERSATIONAL state

CONSTRUCTED ACROSS multiple METHOD CALLS

62.

63. In JAVA EE environment, many properties required in the

PERSISTENCE.XML file for JAVA EE may be omitted. Instead of

JDBC properties for creating a connection , it is possible to add

DATA SOURCE NAME , jdbc/EmployeeDS

LIYANA ARACHCHIGE RANIL

64. At some situations when not all the data is required , LAZY

FETCHING can be used.The FETCH TYPE of a BASIC mapping can

be declared as LAZY as follows

@Basic(fetch=FetchType.LAZY)

@Column(name=”COMM”)

private String comments;

65. Persistence provider is not REQUIRED to provide LAZY

fetching , this is only a HINT to the PERSISTENCE provider

66. It is NEVER a good idea to LAZY FETCH SIMPLE types in an

ENTITY

67. LAZY FETCHING is better when it comes to RELATIONSHIP

MAPPINGS

68. CLOB holds CHARACTER LLARGE OBJECT while BLOB holds

BINARY LARGE OBJECTS

@Entity

public class Employee{

@Id

private int id;

@Basic(fetch=FetchType.LAZY)

@Lob @Column(name=”PIC”)

private byte[] picture;

}

69. Enumerations can have two types , ORDINAL (will take the

ordinal values such as 1,2,….n)or STRING(Place the String

value), such as

@Entity

public class Employee{

@Id

private int id;

@Enumerated(EnumType.STRING)

LIYANA ARACHCHIGE RANIL

private EmployeeType type;

}

70. TEMPARAL types are TIME BASED types used in PERSISTENCE

mapping. The type SQL are completely hassle free and do not

need special consideration. Java.Util types need additional

attention. There are THREE enumerated values of DATE , TIME

and TIMESTAMP to use with java.util types.

a. java.sql.Date

b. java.sql.Time

c. java.sql.Timestamp

d. java.util.Date

e. java.util.Calendar

@Entity

public class Employee{

@Id

private int id;

@Temporal(TemporalType.DATE)

private Calendar dob;

}

71. Use @Transient , or transient keyword to keep Entity properties

from saving in to persistence store

72. There are different ID GENERATION algorithms in use in JPA

73. AUTO , TABLE , SEQUENCE , IDENTITY would be used for

generating id

a. AUTO – Application does not care what kind of generation

is used by the PROVIDER but wants generation to occur.

The AUTO mode is really a DEVELOPMENT or PROTOTYPE

strategy

LIYANA ARACHCHIGE RANIL

b. TABLE – Id generation using table is the most flexible and

portable way.

c. SEQUENCE – Id generation using a DATABASE sequence

d. IDENTITY – Id generation using Database Identity. Some

DBs support PRIMARY key IDENTITY columns.

74. SINGLE VALUED ASSOCIATION – An association from an ENTITY

instance to ANOTHER (where the CARDINALITY of the TARGET is

ONE) is called a SINGLE VALUED ASSOCIATION , Many-to-One

and One-to-One fall to this category

75. COLLECTION VALUED ASSOCIATION – when the source entity

references one or more TARGET entity instances , a MANY

VALUES association is used – One to Many and Many to Many fall

in to this category

76. There are few mapping type

a. Many-to-One

LIYANA ARACHCHIGE RANIL

i.

b. One-to-One

LIYANA ARACHCHIGE RANIL

i.

ii. Bi Directional One-to-One

LIYANA ARACHCHIGE RANIL

iii.

iv.

v.

LIYANA ARACHCHIGE RANIL

vi. One-to-One Primary Key Mapping

vii. A specific case of a UNIQUE ONE-to-ONE relationship

is when the primary keys of the related entities are

GURANTEED to match

viii.

c.

d. One-to-Many

i. A BI DIRECTIONAL One-to-Many mapping ALWAYS

implies Many-to-One mapping back to the SOURCE

LIYANA ARACHCHIGE RANIL

ii.

iii. One to Many association is almost ALWAYS BI

DIRECTIONAL

iv.

v. There are important points to remember when

mapping One to Many associations , Many-to-One

side is the OWNING side, so the JOIN COLUMN is

defined on that side

vi. The One-to-Many mapping is the INVERSE side, so

the MAPPED BY is on that side

vii. There are One-To-Many UNIDIRECTIONAL mappings

also available

viii. Unidirectional mappings need a JOIN TABLE

LIYANA ARACHCHIGE RANIL

ix.

x.

xi.

e. Many-to-Many

i. The ONLY way to implement a Many-To-Many

relationship is with a SEPARATE JOIN table

LIYANA ARACHCHIGE RANIL

ii.

iii.

LIYANA ARACHCHIGE RANIL

iv.

v. When one side of the Many-to-Many relationship

does not have a mapping to the other , then it is a

UNIDIRECTIONAL relationship

vi. The Join table must still be used, the difference is

that only ONE of the TWO entity types ACTUALLY

uses the table to LOAD its related entities or

UPDATES it to store additional entity ASSOCIATIONS

vii. In BOTH two UNIDIRECTIONAL collection VALUED

cases , there is no COLLECTION ATTRIBUTE in the

TARGET ENTITY, mappedBy elements will not be

PRESENT in the @OneToMany annotation on the

SOUECE ENTITY.

77. PERSISTENCE UNIT – Named configuration of ENTITY

classes

78. PERSISTENCE CONTEXT – Managed set of ENTITY

INSTANCES

79. There are THREE different types ENTITY MANGERS

a. CONTAINER MANAGED ENTITY MANAGERS – Container

manages the LIFECYCLE of the ENTITY MANAGER

LIYANA ARACHCHIGE RANIL

i. TRANSACTION SCOPED CONTAINER MANAGED

ENTITY MANGERS – The persistence context that the

Transaction Manager works with would be decided

by the ACTIVE JTA transaction. Whenever the ENTITY

MANAGER is injected into the em filed using

@PersistenceContext. Transaction Scoped ENTITY

MANAGERS are STATELESS

1. All CONTAINER MANAGED ENTITY MANAGERS

depend on JTA TRANSACTIONS

2. ENTITY MANAGER can use the JTA as a way to

track PERSISTANCE CONTEXT associated with

it

3. Every time when an operation is invoked on

ENTITY MANAGER it checks in the JTA whether

existing PERSISTANCE CONTEXT, if yes use

that , if no CREATE NEW

4. When the TRANSACTION ENDS , PERSISTANCE

CONTEXT goes away

ii. EXTENDER COTNAINER MANAGED ENTITY

MANAGERS – Works with a SINGLE persistence

context that is tied to the life cycle of a STATEFULL

SESSION BEAN

1. Prevents ENTITIES becoming DETACHED when

transaction ENDS

LIYANA ARACHCHIGE RANIL

2.

3. The EXTENDED persistence context allows

STATEFUL session beans to be written in w

way that is more NATURAL

LIYANA ARACHCHIGE RANIL

4. EXTENDED entity manager CREATES a

PERSISTENCE CONTEXT when a STATEFUL

session bean instance is created that LASTS

until the bean is REMOVED

5. The BIGGEST limitation of the EXTENDED

persistence context is that it REQUIRES a

STATEFULL SESSION BEAN

b. APPLICATION MANAGED ENTITY MANAGERS

i. Any ENTITY MANAGER created by calling

createEntityManager() method on an

ENTITYMANAGERFACTORY is an APPLICATION

MANAGED ENTITY MANAGER

ii. Application manages the LIFECYCLE of the ENTITY

MANAGER

iii. APPLICATION MANAGED ENTITY MANAGERS are the

only available option in J2SE environment

LIYANA ARACHCHIGE RANIL

iv. To

v.

vi. To create an APPLICATION MANAGED ENTITY

MANAGER in JAVA EE environment , use

@PersistenceUnit annotation

LIYANA ARACHCHIGE RANIL

vii.

viii. In terms of PERSISTENCE CONTEXT , application

managed entity manager is similar to CONTAINER

MANAGED EXTENDED ENTITY MANAGER

ix. If RESOURCE LOCAL transaction is required , then

APPLICATION MANAGED ENTITY MANAGERS are the

only option in J2EE environment

LIYANA ARACHCHIGE RANIL

80. There are TWO transaction MAANGEMENT types supported

by JAVA PERSISTENCE API

a. RESOURCE LOCAL TRANSACTION

b. JTA TRANSACTIONS

81. CONTAINER MANAGED ENTITY MANAGES always use JTA while

APPLICATION MANAGED ENTITY MANAGERS can use either of

those

82. Only ONE persistence context could be PROPAGATED with

a JTA transaction

83. EXTENDED persistence context would always try to make

itself the ACTIVE PERSISTENCE CONTEXT

84. This leads to a situation where TWO PERSISTENCE

CONTEXTS COLLIDE with each other

85. There can only be ONE ACTIVE PERSISTENCE CONTEXT per

TRANSACTION

86. One way to WORKAROUND this problem is to change the

DEFAULT transaction attribute for the STATEFULE SESSION bean

that uses EXTENDED persistence context

87. One last option to CONSIDER using an APPLICATION MANAGED

entity manager INSTEAD of an EXTENDED ENTITY MANAGER if

there is no need to PROPAGATE the persistence context

88. There is no limit to the number of application managed

PERSISTENCE CONTEXT that may be SYNCHRONIZED with a

transaction, but only one COTNAINER MANAGED PERSISTENCE

CONTEXT will ever be associated

89. APPLICATION MANAGED persistence context may be

SYNCHRONIZED with JTA transactions. Synchronizing means

FLUSH will occur if the transaction commits

LIYANA ARACHCHIGE RANIL

90. APPLICATION MANAGED ENTITY MANAGER participate In a

JTA transaction in one of two ways

a. If the PERSISTENCE CONTEXT is created INSIDE the

TRANSACTION , then the PERSISTENCE PROVIDER will

AUTOMATICALLY SYNCHRONIZE the PERSISTENCE

CONTEXT with the TRANSACTION

b. If the PERSISTENCE CONTEXT is CREATED EARLIER ,

outside the transaction , the PERSISTENCE CONTEXT may

be MANUALLY SYNCHRONIZED by calling

joinTransaction() on the ENTITY MANAGER

c. Once SYNCRHONIZED The persistence context will

AUTOMATICALLY BE FLUSHED when the transaction

COMMITS

LIYANA ARACHCHIGE RANIL

d.

91. PESISTENCE CONTEXT INHERITANCE - When a STATEFUL

SESSION BEAN with an EXTENDED PERSISTENCE context creates

another STATEFUL SESSION BEAN that also uses an EXTENDED

PERSISTENCE CONTEXT , the CHILD will INHERIT from the

PARENT

LIYANA ARACHCHIGE RANIL

92. A DETACHED entity is one that is not associated with a

PERSISTENCE CONTEXT

93. MERGING is the opposite of the DETACHMENT

94. RESOURCE LOCAL TRANSACTIONS – Resource local

transactions are controlled by the APPLICATION

95. Applications interact with the RESOURCE LOCAL

TRANSACTION by acquiring an implementation of the

EntityTransaction interface from the EntityManager

96. The getTransaction() method of the EntityManager

interface is used for this purpose

97. The EntityTransaction interface is designed to IMITATE user

transaction interface

98.

LIYANA ARACHCHIGE RANIL

99.

100. One of the examples of using RESOURCE LOCAL

transactions in Application server environment is LOGGING

101. By Default every ENTITY MANAGER operation applies only

to the ENTITY SUPPLIED as an ARGUMENT to the OPERATION.

The operation will not CASCADE to other entities that have a

relationship with the entity that is being operated on

102. Cascading means propagating the operations to the

relationships as well. Usually in JPA the CascadeType can be

used. PERSIST , REFRESH,REMOVE , MERGE

LIYANA ARACHCHIGE RANIL

103. REFRESH method of the EntityManager is used to refresh

the entity state

104. REFRESH operation is applied only when the ENTITY is

MANAGED

105. When REFRESH is invoked it will OVERWRITE the ENTITY

STATE from the DATA BASE

106. JPA entities can have CALLBACK methods which are

executed whenever a lifecycle method is invoked

107. Those CALLBACK methods could be annotated

with,@PrePersist , @PostPersist , @PreUpdate , @PostUpdate ,

@PreRemove , @PostRemove, @PostLoad

108. Entity LIFECYCLE CALLBACK methods can be defined on

ENTITY LISTENERS classes or in the ENTITY itself

109.

110.

LIYANA ARACHCHIGE RANIL

111. EXTENDED entity managers can only be used with

STATEFUL EJB , with STATELESS and MDB it is not allowed to use

112. JPA ENTITY CLASSES can not use container services such as

SECURTIY , TRANSACTION ATTRIBUTES , RESOURCE INJECTIONS

since those are not managed UNDER the CONTAINER

113. ENTITY MANAGERS are NOT THREAD SAFE

114. You can INJECT ENTITY MANAGERS to SERVLETS and even

JSF BACKING BEANS

115. CONTAINER MANAGED TRANSACTION is not available in

WEB CONTAINER , hence you have to use BMT and

UserTransaction interface for transaction demarcation if you use

JTA resource

116. If “EntityManager.getTransaction()” is invoked on a

JTAEntity Manager it would throw an Exception.

EntityManager.getTransaction() can only be invoked on NON JTA

Entity Managers (RESOURCE_LOCAL). This would return

EntityTransactionService interface which mimics the

UserTransaction interface

Entity Manager

Application managed EM Container managed EM

Application Managed JTA
EM

//get through lookup of
injection

UserTransaction u;
u.beginTransaction()
em.joinTransaction()

Application Managed
RESOURCE_LOCAL EM

EntityTransactionService
ets =

Em.beginTransaction()

Container Managed JTA
EM

NO user transaction is
accessible here , calling

em.getTransaction throws
Exception

Container Managed
RESOURCE_LOCAL EM

Extended EM

Transaction
Scoped EM

LIYANA ARACHCHIGE RANIL

BEAN MANAGED TRANSACTION CONTAINER

MANAGED TRANSACTION

117.

